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1. STATEMENT OF THE PROBLEM 

A comprehensive treatment of the control problem for space vehicles requires a 
consideration of the various random effects that influence overall performance. In 
this category, we include instrumentation noise, parameter uncertainty, extraneous 
disturbances, etc. Underlying all these cases is the fact that one is dealing with 
phenomena that are not predictable in a deterministic sense. Statistical methods 
must therefore be employed in some rational manner that yields useful results. 

In this monograph, we are mainly concerned with random (hereafter called “sto- 
chastic”) effects insofar as they influence the design of space vehicle control systems. 
Attention will therefore be focused on three areas where stochastic control principles 
have been employed to enhance system performance. 

The first of these deals with instrumentation noise, the word noise being used in 
a generic sense to denote extraneous effects that contaminate a given signal. The 
classical solution to this problem involved the design of filters to suppress unwanted 
signals. The design of these filters presupposed that the desired and parasitic sig- 
nals could be characterized by well defined frequency bands. But if both the signal 
and noise are described only in a statistical sense, then a more sophisticated approach 
is required. The modern approaches to this problem all stem from the classic work 
of Wiener, @) who laid the foundation for the optimal design of filters that minimize the 
influence of random noise. The features and use of some of these techniques are des- 
cribed in this monograph, especially as they pertain to instrumentation noise common- 
ly encountered in space vehicle control systems. 

A second and related problem is that of separating signal from noise in a generic 
sense; in other words, when instrumentation noise is not the sole source of extraneous 
signals. It may be desired, for example, tocontrol a system optimally when there 
are extraneous disturbances whose general features can be described only in a statis- 
tical manner. This would include the design of a launch vehicle autopilot subjected to 
winds whose description is given by suitable probability distributions. 

Finally, it may be desired to determine various control system parameters to 
minimize some designated error function when parasitic signals are present. 

All these methods are presently being used or are potentially useful in the design 
of space vehicle control systems. Various applications are described in this mono- 
graph. 

So that this document will be reasonably self-contained, the exposition proceeds 
from first principles. Some derivations have been included, primarily as an aid to 
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understanding the basic principles and limitations of the method. These derivations 
are characterized by extreme brevity and generally phrased in the engineering vernac- 
ular, a procedure that has a high degree of plausibility and intuitive appeal. The math- 
ematical purist may therefore find distress in such steps as unhesitatingly interchanging 
the order of integration and assuming that various limiting processes are valid. In all 
instances, however, suitable reference is made to rigorous demonstrations in the liter- 
ature. Because the development is in many instances simpler (albeit less rigorous) 
than that available in standard texts, it was deemed justified to include it here, es- 
pecially as it contributes to the understanding of what is generally a difficult subject. 

A summary of typical applications in aerospace control problems is included, and 
a guide to detailed analysis of specialized cases is contained in an extensive list of ref- 
erences. 
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2. STATE OF THE ART 

The period immediately following publication of Wiener’s classic work(‘) on linear 
filters and stationary time series witnessed the appearance of a broad range of studies 
dealing with various extensions and generalizations. The newer developments enlarged 
the scope of the theory to include nonstationary time series and finite memory (time- 
varying) linear filters as well as some special results for nonlinear filters(7’ 12). These 
results were, for the most part, highly theoretical, and the sophisticated mathematics 
made them inaccessible to most engineers. This condition was remedied somewhat by 
the appearance of several texts(5’47) aimed specifically for control engineers. 

Until only a few years ago, engineering application of the theory was very limited. 
Wiener’s original problem related to the design of a realizable linear filter that mini- 
mized the mean-square error when the filter input was composed of a signal corrupted 
by additive noise and both the signal and noise had well-defined statistical properties. 
A related study by Phillips(47) showed how to vary some parameters of a fixed filter in 
order to achieve mean-square-error minimization. 

The wide scope of the Wiener theory, however, stimulated fresh approaches to re- 
lated problems. Press and Houbolt(4g) showed how some of Wiener’s equations could 
be applied to gust loads on airplanes in the sense of determining output power spectra 
from random inputs expressed in power spectral form. 

Perhaps the most significant new result since Wiener was obtained by Kalman(13), 
who expressed Wiener’s formulation in state transition concepts in the time domain 
(rather than frequency) and thereby simplified the mathematical structure immensely; 
more important, he greatly enlarged the area of application. Most of the engineering 
literature in the last three or four years in stochastic control has been expressed in 
Kalman’s format. The method enables one to treat problems of noise and disturbance 
minimization in a highly systematic manner; it has been used to design optimal filters 
and control functions as well as to identify unknown system parameters. 
Johansen 

Bryson and 
extended Kalman’s technique to include the case of “colored noise. ” 

The theory of Wiener-Kalman filtering (as it is now called) has become virtually 
classical in a very short time. The basic results are firmly and rigorously established, 
and the theory has assumed a prominent role in modern control system design. Recent 
studies have demonstrated that an intimate relationship exists between the Wiener- 
Kalman theory and related statistical optimization methods such as linear regression(S3), 
maximum likelihood(54), and dynamic programming(26). A summary of these ideas is 
contained in a stimulating paper by Smith(55). A judicious blend of advances in related 
fields will no doubt further enlarge the scope and application of stochastic control con- 
cepts. 
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3. RECOMMENDED PROCEDURES 

3.1 MATHEMATICAL PRELIMINARIES 

This section presents some of the essential aspects of the theory of proba- 
bility and random processes. The treatment is extremely brief, highlighting definitions 
and results pertinent to the subject matter of the monograph. In keeping with the theme 
of the presentation, we emphasize physical understanding rather than mathematical ab- 
straction, with the hope that the underlying ideas can be made intuitively plausible. We 
do not seek, however, to disparage the merits of a rigorous treatment, which is neces- 
sary for some of the more sophisticated applications of the theory. For this, we must, 
of necessity, refer the reader to standard references(ls3). 

3.1.1 Random Variables 

The concept of a random variable is fundamental to all that follows. A random 
variable is defined as a function whose value depends on the outcome of a chance event. 
Generally, in any chance event, certain outcomes are “more likely” than others. This 
idea is made precise by defining a distribution function, F(x), as follows: 

F(x) = Prob (R s x) 

In words, F(x) is the probability that the random variable, R, takes on a value 
equal to or less than x. 

Since the probability of an event must lie between zero (impossibility) and one 
(certainty), it follows that F(x) must satisfy the following: 

F(a) 5 F(b) if a s b (1) 

F(-a) = 0 (2) 

F(m) = 1 (3) 

If F(x) is differentiable, as will be assumed for the most part hereafter, then 
we define the probability density function by 

d F(x) f(x) = 7 

Since F(x) is nondecreasing, it follows that 

f(x) 2 0 for all x (4) 



Furthermore, if a <b, then 

[f(x) dx = /dF(x) = F(b) - F(a) 

= Prob (R sb) - Prob (R 5 a) 

= Prob (a zz R s b) (5) 

Also, 

X 

J 
f(X) dx = F(x) - F(-03) = F(x) (6) 

-co 

co 
J f(x) dx = F(m) - F(-a) = 1 (7) 
-0 

Associated with each probability density function, f(x), of a random variable, R, are 
the following: 

Mean: 

co 

E(R) 3 m = 
/ 

xf(x) dx 
,m 

Mean Square : 

co 

E(-R2) I v = J x2 f(x) dx 
-03 

Variance : 

E[(R-m)21 = O2 
2 = V-m 

= 
s (x - m)2f(x) dx 
-03 

03) 

(9) 



.- 

Quantity u is called the standard deviation. 

The moments of the density function are defined by 

cl! = n E@? = J x” f(x) dx 
-CD 

while the central moments are defined by 

cc n 
= E [@-m)n] = 

/ 
(x - m)n f(x) dx 

-0 

(11) 

(12) 

Note that 

“0 = 1 

Y 
=m 

o2 = u 

A knowledge of the density function serves in defining the properties of the 
random variable completely. If the density function is not known, then the statistical 
properties of the random variable are described in terms of its first and higher mo- 
ments. The more of these that are known, the more complete the description of the 
random variable. In most cases of interest, a knowledge of the first two moments is 
sufficient to describe the properties of the random variable. Some of the more common 
probability density functions are listed below. 

Binomial : 

f(x) = nl 
x! (n-x)! 

px (1 - p)n-X (13) 

f(x) is the probability that an event will occur x times in n trials, where p 
is the probability that the event will occur in a given trial. 

Here n and x are positive integers such that 0 5 x s n, and p is a real number 
between zero and one. It follows readily that 

m = np 

0” = np(l-P) 

(14) 

(15) 
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Poisson: 

A” -1 
f(X) =-e 

x! 
(16) 

x = 0,1,2, . . . . . . . 

A>0 

In this case, 

m = Q2 = i 

Gaussian: 

(17) 

The above results are readily generalized to the case of n random variables, 
RI, R2, . . . . . . . , Rn. For example, the joint distribution function, F(xl, x2, . . . . . , xn) 
is defined by 

Ftxl, x2’ . . . . . . , “,, = Prob [RI 5x1, R2 5x2, . . . . . . . 

. . . . . . , R, ‘“,I (19) 

In words, F(xl, x2, . . . . . , xn) is the probability that Ri takes on a value equal 
to or less than 3 for i = 1, 2, . . . . , n. All the inequalities must be satisfied simultane- 
ously. 

The joint probability density function is defined by 

f(X1, x2, . . . . . . , xn) = 
anF(xl, x2, . . . . . xn) 

ax, ax,. . . . . . . . . axn 

The quantities of interest are the following: 

(20) 

Mean: 

m. 
1 

= E(Ri) 

8 

(21) 



Variance and Covariance: 
variance 

U.. 
11 

= E C(Ri-mi)(R. -mj) 1 
i=j; 

J 
if j; covariance 

Correlation: 

‘ij = Uij ‘(Uii Ujj’ 
- l/2 

(22) 

(23) 

Of special interest in the subsequent analyses is the multivariate Gaussian 
(normal) density function given by 

f(xl, x2, . . . . . , xn) = C(2r)ndetV] 
-l/2 

exp (iLG,l (24) 

Here x and m are n vectors and V is an n X n matrix whose typical element is 
0.. ; viz., 

9 

V = E[:@-m)&,)T] (25) 

In the sections tha.t follow, we shall deal extensively 
butions of two variables. The following definitions define the 
in this case. 

Moments : 

ojk = E(R;H;) = xi xk f(x 12 1’2 xwp2 
-ax -co 

Central Moments: 

‘jk = 13 [(R1-ml)J @2-m2)kl 

co co 

= 
J/ (x 1 -ml? (x2 - m21kf(xl, x2) kl h2 
-03 -03 

with probability distri- 
parameters of interest 

(26) 

cm 

Note that, in particular, 

o10 = E(R1) = ml 

o!ol = E(R2) = m2 
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p20 = E [&l-ml)21 

= @20-<o = variance of R 
1 

go2 = E C@,-m2)‘l 

2 
= Qo2-“-01 = variance of R 

2 

%l = E [(R,-m,) (R2-m2)1 

= 041 -“loocol E covariance of R1 and R 
2 

Note also the following equivalence: 

52 = 31 

The quantity 

= 52 (31 u22) 
-l/2 

p12 

= %1@20 po2) 
-l/2 

is called the correlation coefficient of R1 and R2. 

The fundamental quantities of interest in relation to a random variable are 
the mean and the variance of the probability density function. To obtain some physical 
insight into the significance of these quantities, consider the Gaussian (or normal) den- 
sity function shown in Fig. 1. When the mean, m, equals zero, the curve f(x) vs x is 
symmetrical about the x = 0 axis as shown in Fig. la. For any nonzero value of m, 
the curve is merely shifted parallel to the f(x) axis in the manner shown in Fig. lb. 
Parameter u gives a measure of the rapidity with which the curve drops off. Fig. lc 
shows two Gaussian density functions where a2 > ul. It is apparent that the smaller 
the value of u, the steeper the curve. 

As an illustration of the use of this curve and the order of magnitude of nu- 
merical quantities involved, let it be required to determine the probability that a ran- 
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a. Zero Mean 

b. Nonzero Mean 

U2 > Ul 

I m 
x 

c. Effect of Variation in U 

Figure 1. The Gaussian Density Function 
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dom variable, R (whose density function is Gaussian), assumes a value in the range 
(m - b) to (m + b) for a given value of b. From Eq. (5), 

m+b 

Prob [m-b s;R <m+b] = 
J f(x) dx 
m-b 

where 
f(x) =Lexp - (x -m)2 

u 2n d- [ 1 2u2 

In order to use available tables-for the Gaussian density function, we convert 
to “standard” form via the substitution x = t u + m. This leads to 

Prob [m-b 5R <m+b] = F(m+b) - F(m-b) 

b/u -b/u 
1 =- -- 

c 
J e-1/2 t2dt 1 

c- 
J e-1/2 t2dt 

277 -03 2n -* 

Using standard tables(2), we find 

Prob [m-b sR <m+b] = 0.6827 ifb = u 

= 0.9545 ifb = 2u 

= 0.9973 ifb = 30 

In other words, the smaller the value of u, the greater the tendency of the 
random variable to assume a value close to the mean. 

3.1.2 Random Processes 

By a random process we shall mean a collection or ensemble of functions of 
time having certain statistical properties. A typical case is shown in Fig. 2. The 
random process is characterized by probability distribution functions defined as follows. 
Let x(t) denote a representative member of the ensemble {x(t)]. Then x(tl) is a random 
variable in the sense defined in Sec. 3.1.1. A probability distribution function, 
F1(xl, tl) is defined by 

F1(X1, tl) = mob Cx(t,) 5 x1 1 

where x1 is a prescribed number. The probability density function is 

fl(xl’ $1 = 
-(xl, tl) 

ax 
1 

(28) 

(29) 
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Time 
Figure 2. An Ensemble of Random Functions of Time 

It follows that 

Prob [xl 5 x(t,) 5 x1 + dxl I = fl (x,, tl) dxl (30) 

Similarly, the probability that simultaneously x(tl) s x1 and x(t2) < x2 is given 
by the second probability distribution function 

F 6 2 1’5’ x2’ 2 t) = Prob [x(t,) -zx 1 ; x(t,) s x21 

The corresponding probability density function is given by 

f2 (x1, t1 ; X2’ t2) = 
a2F (x 2 1’ t1 ; X2’ t2) 

ax, ax, 

Similarly 

F3 (xl, tl ; x2’ t2 ; x 3, t3) .= Prob [x(t,) s x1 ; x(t,) s x2 ; x(t3) ’ x3 1 

(31) 

(32) 

etc. Each fn implies all previous fk for k < n by the relation 
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co 
fn-l(xl’ tl; . . . . . . . . ; xnB1, tn& = 

s fn(X1’ tl’ *“.**“‘xn’ n t Id”, (33) 
-m 

As in Sec. 3.1.1, we define the mean by 

m. 
1 

= E[x(ti)l (34) 

and the covariance by 

0.. 
9 

= E {[x($) -m,l[x(tj, -mjl 3 (35) 

It is important to note the distinction between the definitions for a random 
variable and for a random process. 

The covariance may be written in expanded form as follows. 

0.. = 9 E [x($1 x’tj) 1 - mi mj 

The first term on the right-hand side of this expression plays a fundamental 
role in stochastic control theory, and it is accorded a separate name and symbol. 

(p,(ti, tj’ = E [x(L) “‘tj’ 1 (36) 

We call this the autocorrelation function of x, the subscript xx indicating 
correlation of x(t) with itself as distinguished from cross-correlations to be discussed 
later. 

The set of density functions fl, f2, . . . . . , fn describes the random process 
in ever-increasing detail. In addition to the mean and covariance already defined, 
higher-order moments may also be defined in a manner analogous to that of Sec. 3.1.1. 
However, these will not be required for the topics to be dealt with in this monograph, 
and they are therefore not pursued further. 

It is often required to consider the statistical relationships between two ran- 
dom processes, [x(t) ] and [y(t) 1. For this case, we define a general joint distribution 
function as follows. 

F(‘) (x t mn 1’ x t 1’ *--*.* -3 m9 m ; Y1’ t;, .......... Yn’ $1 

= Prob [x(t,) <x1, .............. “em’ 5 xm ; Ye;) 5 Y 1’ 

. . . . . . . . , YQ 'Ynl 
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The associated joint density function is 

f(c) (x t mn 1’ 1 , . . . . . . . . , X m’ tm;yl, t;, l *--****, Yn’ $1 

am+nF(c) 
mn 

= ax, axm aY1 ayn 
(37) . . . . . . . . . . . . . . 

(cl In practical applications, only the joint density function, fll (xl, tl; yl, t;), is 
used extensively. Of the moments associated with these joint density functions, the 
only one that will be used subsequently is 

E [Ml) y(t2) 1 = JJ xyfg lx, tl ; Y, t2) dxdy 
-co -m 

(33) 

This quantity is called the cross-correlation function and is denoted by the 
symbol 

y&. t2) = E b(t,) y(t,) 1 (39) 

If {x(t) } and {y(t) ] are statistically independent -- that is, if the value of x(t) 
does not depend in any way on the value of y(t) -- then 

E [x(t,) y(t,) 1 = E b(t,) 1 E [y(t,) 1 

We sometimes deal with a signal of the form 

(49) 

z(t) = x(t) + y(t) 

where {x(t)] and {y(t)] are two given random processes. In this case, we find, di- 
rectly from the definitions, 

‘pzz ttl 9 t2) = (P&Y t2) + y&9 t2) 

+ v&p19 t2) + cp (t yy 1’ t2) (41) 

From (39)) it is obvious that in general, cp (t xy 1’ 
if {x(t)] and {y(t)} are statistically independent, then 

t2) # cp,(t,, t2). Note that 

y&, t2’2) = BF(tl’ t21 = 0 (42) 

15 
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if one or both of the random processes has a zero mean value. In the particular case 
when (40) and 42) hold, then Eq. (41) reduces to 

‘pz. (tl 9 t21 = fP&’ t2, + cp,(t,s tz’ (43) 

A random process is said to be stationary if its statistical properties do not 
vary with time. An important consequence of this property is that 

E cx(t+~)] = E [x(t) ] 

The particular choice T = -t gives 

E [x(O)] = E [x(t)] 

The autocorrelation function for a stationary random process satisfies 

‘P,(tl+T, t2+T) = y&9 t2’ 

for all 7. hi particular, if T = -tl, then 

“&’ t2’ = cp,(O, t2 -tll 

In other words, the autocorrelation function for a stationary random process 
depends only on the time interval, not the specific valut. s of time. It is sppropriate to 
denote the autocorrelation function for a‘stationary random process by a :jpecial sym- 
bol; thus 

r&T) = ‘pxx(o 9 t2 - tl) (44) 

where T = t2 -tl. In similar manner, for the ~.ro:‘is -c ,:relation function : 

rxy(7) = sbxy(ov t2 - tl) (45) 

Note that 

rxy(T) = E [x(t) y(t+ 7) 1 (46) 

The autocorrelation function satisfies the following. 

r&T) = r&-7) (47) 

1 r&n 1 s r,(o) (48) 

If x(t) does not contain any periodic component, then 

lim r=(T) - 0 (49) 
74 
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A stationary random process is often assumed to be ergodic. Generally 
speaking, this property permits one to equate ensemble averages and averages with 
respect to time performed on a single representative member of the ensemble. More 
precisely, a stationary random process is said to be ergodic if every member, x(t), 
of the ensemble {x(t)] satisfies 

T 

E [V[x(t)]} = lim & 
J 

V[x(t+T)]dt (50) 
T+” -T 

where V[x(t) 1 is any random variable associated with x(t); e.g. , V =x(t), x2(t), x(t,) x(t,). 

When the ergodic property holds, we have 

T - 

E [x(t)] = lim & 
“I- 

x(t) dt 
T-+03 -T 

T 

E [x2(t) ] = lim & 
T-m 

x2(t) dt 

(51) 

(52) 

r=(T) = E [x(t) x(t+ T)] 

I 

= lim & 
“I- 

x(t) x(t + 7) dt (53) 
T-a -T 

The ergodic property is important because it eliminates the need for dealing 
with a large ensemble in order to calculate probability density functions. For example, 
if the random process is stationary, then 

Et-x(t)] = J x1 fl (x1) hl -02 

r=(T) = aI1 = 
J 

x x f (x 1 2 2 1’ x2’ 7) kl k2 
-03 

However, if the process is also ergodic, then the two foregoing quantities are 
given in much simpler form by Eqs. (51) and (53) which do not involve probability den- 
sity functions. This results in a crucial simplification for computational purposes. 
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3.1.3 Random Signals and Linear Filters 

Given a random stationary signal characterized by appropriate statistical 
parameters, we may pose the question, ‘IIf this signal is applied at the input of a linear 
filter, what is the output? ” A linear filter is best described by its transfer function, 
which requires that the input s.ignal be decomposed into its harmonic components if the 
signal is periodic. The action on each harmonic component is then determined and the 
results superimposed. 

When the signal is not periodic, it cannot be decomposed into discrete harmonic 
components; but if it has a Fourier (or Laplace) transform, then it has a continuous 
frequency spectrum that can be treated mathematically as a spectrum of harmonics. It 
is natural, therefore, to investigate the properties of the Fourier transform of x(t) ; viz. , 

05 
X(0) = I- x@) e -iwt dt 

An immediate difficulty is encountered. If x(t) is stationary, then its statis- 
tical properties do not vary with time; however, x(t) can wander randomly ad infinitum 
with respect to time. In short, the integral in the above expression may not converge, 
in which case its Fourier transform does not exist. However, while an expression 
such as 0) co 

J x(t) dt or J x2(t) dt 
-03 -Q) 

may not converge, it happens that the quantity 

T 

E[x2(t)] = lim L T” 2T -Tx2(t’ dt J 
which represents the mean square* of x(t), is finite for nearly all random phenomena 

T 
of interest. It is natural to think of 

/ 
x2(t) dt as being a measure of power, in which 

-T 
case, Eq. (54) represents average power in the interval (-T, T). 

We now have a foothold on a method of converting a quantity of interest, ex- 
pressed in the time domain, to an equivalent formulation in terms of frequency spec- 
trum. The procedure is as follows. Define 

x,(t) = x(t) -TgtrT 

= 0 otherwise 

*See Eq. (52). 
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The Fourier transform of XT(t) exists and is given by 

= 
J x(t) e -iwt dt 

-T 

x,(t) = & J XT(u) e iwtdw 

-co 

The quantity defined by 

G=(w) E lim 
I XT(W) I 2 

T-+m 
2T 

is called the power spectral density*. We will show that this quantity exists and is 
finite if the mean-square value of x(t) is finite. 

We have 

03 m 

= lXT(m) dw /XT(t)eiwtdt 
-co 

= {x,(t)dt jxT(uj eiwtda 
-03 ,m 

= 2n 
/ 

x; (t) dt 
-co 

(56) 

(57) 

(58) 

*Some authors call this the power density spectrum, spectral density, power spectrum, 
etc. 
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Therefore, 

1 
do = ;E 2T ,o) T J x2 (t) dt 

T 

= lim & 
J 

x2(t) dt 
T- -T 

This last quantity is the mean-square value of x(t), which is finite by assump- 
tion. Consequently, the power spectral density defined by Eq. (58) exists, since its 
integral converges. 

It may be shown that the autocorrelation function is the Fourier transform of 
the power spectral density. To do this, define 

CT(T) = & / x(t)x(t+T)dt 
-T 

which is merely Eq. (53) with T finite. Note that 

lb CT(T) = r,(T) 
T-+03 

The Fourier transform of CT(~) is 

co 

lim J T-co -co 
CT(T) e 

-iwTdT 

= lim T-~ -& jiaTdT ]xT(t)xT(t+T) dt 
mm -co 

co co 

1 JJ dt [3(t) eiWt] [xT(t+T) e-iw(t+T’l dT 

,Q3 ,m 

03 CD 

1 
= ;z 2T ,m T J x W e 

iot dt J x We 
-iwt 

,co T l 
1 dtl 
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1 
=;ya2T T - x t-w) XT(W) 

= lim 
Ix,(w) I2 

T4 2T 

by (58). 

This means that 

m 

G,JN = J 
rm (7) e-lwTdT 

-00 

and m 

r,iT) = & 
J 

G=(w) e’*‘drx 
-a 

030) 

Since both r&7) 
arguments, we may write 

and G,(w) are real-valued even functions of their respective 

G=(w) = 2 J 
0 

r=(T) COS WT dT 

co 

r=(T) = + J 
0 

G=(w) cos WTdu 

031) 

(62) 

These are known as the Wiener-Khinchin equations. 

Remark: There is a distressing lack of uniformity in the literature regarding the 
definitions of Q(o) and the Fourier transform. The former is variously 
defined as 

lXTbd12 IXTW12 
T ’ 2~r T , etc. 

while the Fourier transform pairs are defined by 
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CD 

f(t) = 1 
Jr 

J F(O) e 
iwtdw 

2s -- 

CD 
(Ref. 5) 

1 
F(o) = - 

d-- 
J f(t) e -iwt dt 

2V -03 

f(t) = 
J 

iot 
F(o)e dw 

-(D 

Co 
(Ref. 48) 

F(o) = & J f(t) e 
-iwtdt 

-co 

The Fourier transform pair, Eqs. (56) and (57),is apparently the most wide- 
ly adopted*. This form will be used consistently in this monograph. 

There even seems to be some inconsistency by the same author. Laning and 
Battin (Ref. 5, p. 123) use 

co 

f(t) = 1 
d- 

J W4 e 
iwtdw 

2n -05 

m 

1 
F(o) = - J f(t) e -iwt dt 

d- 2n -00 

to define the Fourier transform, while in deriving thewiener-Khinchin equations (Ref. 
5, p. 132)) they write 

03 

F(o) = +- J f(t) e -it.& dt -co 
Needless to say, great care must be exercised in comparing results derived 

by different authors. 

*e.g. , Refs. 12, 46, 47. 
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We now return to the question posed at the beginning of this section, namely: 
how does a linear filter affect a random signal? To answer this we proceed as follows. 

If x(t) is any signal applied at the input of a linear filter whose weighting func- 
tion is h(t), then the output is given by* 

m 

Y(t) = / h(u) x(t -u) du 
0 

The autocorrelation function of y(t) is 

T 

J 
y(t) y(t + 7) dt 

-T 

x(t -u) 
I[ 

m 

du h(v)x(t+r-v)dv dt 
0 1 

By interchanging the order of integration, we have 

ryy(T) = 1 {h(u)h(v) [ ;mm & lx(t-u)x(t+r-v)dt] dudv 
0 0 

then 
If we make the change of variable, tl - - t - u, inside the bracketed quantity, 

T 

lim & 
J 

x(t-u)x(t+T-v)dt 
T--rm -T 

T 

= lim 1 
T-am 2T s -T 

x(tl)x(tl+u+r-v)d$ = r=(u-v+T) 

via Eq. (53). 

Therefore, ryy(T) may be written as 

ryyV) = /J 
0 0 

h(u) h(v) I’&u -v+r) dudv 

*See Appendix B. 
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Taking the Fourier transform of both aides and making use of Eqs. (56) and 
(ES), we find 

GyyW = h(u)h(v) r=(u-v+T)dudv e-loTdT 1 - 
After a change in the order of integration, this becomes 

GyyW = [ /h(u) h(v) [ jr=(u-v+r) emiU’dT] dudv 
-0 

Now by making the change of variable, c = u -v + 7, this simplifies to 

co co 

J 

03 

GyyW = h(u) eluU du / h(v) e’lwv dv J . c rxx(n e-l0 dc 
0 0 ,m 

However, by the definition of the Laplace transform, 

H(s) = 1: [h(t)] = J h(t) e -” dt 
0 

s = o+io 
while 

m 

J r,(C) emiwc dC = c,(w) -02 
by Eq. (59). 

We have, finally, 

GyyW = H (-iw) H(iw) G=(w) 

= IH(i G=(w) (63) 

In the usual terminology, H(io) is the transfer function of the linear filter. 

Eq. (63) is of fundamental importance. It shows how the power spectral den- 
sity of a random signal is altered when the signal passes through a linear filter. This 
relation will be used often in the following sections. 
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The discussion thus far has not been limited to any specific type of random 
process. It turns out that much random phenomena of interest can be described in 
terms of normal or Gaussian distributions. More specifically, a random process is 
termed Ganssian (normal) if it is characterized by the n dimensional probability den- 
sity function (17) 

fn(xl, ti; . . . . . . . . ; xn, tn) = [(2Qn det M] -l/2 exp[-$ (&g)TM-‘(z-m) ] (64) 

Here L is an n vector whose typical element is xi, while z is the mean vector, 
a typical element of which is 

m. 
1 

= Ebc(L)l (65) 

M is the covariance matrix whose ij th component is given by 

0.. 1J 
= E rcxcti, -mil CXOj) -mjll 

= qm(ti, tj) - mimj 

If the process is stationary, then m. = mj 2 m and 
1 

0.. 
9 

= rxx (Tij) - m2 W’) 

where T ij =$-3w The G aussian random process is completely determined from its 
joint density function f2 (xi, i t ; x2 tj) because the autocorrelation function is expressed 
in terms of this density function by 

v-33) 

The Gaussian random process has the important property that it remains 
Gaussian after passing through a linear filter. 

3.1.4 Practical Considerations 

A fundamental problem in the analysis of random (stochastic) processes is the 
determination of the statistical properties that characterize the process. In the general 
case, the problem is very formidable. For purposes of computational and theoretical 
expediency, one is compelled to make various assumptions that are valid in greater or 
lesser degree in practical situations. In the first place, most random phenomena of 
interest are stationary; that is, in general, the statistical properties are invariant with 
respect to translation along the time axis. This property affords crucial simplifications 
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in both theoretical analysis and computational methods. One often assumes also that 
the process under consideration is ergodic. This assumption enables one to compute 
the statistical properties from a single long record rather than an ensemble of the type 
shown in Fig. 2. Hereafter, unless otherwise noted, we shall treat only those random 
processes that are both stationary and ergodic. 

Consider now a single noise record of the type shown in Fig. 3. This is 
assumed to be a typical member of an ensemble representing a stationary, ergodic, 
random process. We are interested in calculating the mean and autocorrelation func- 
tion. One may proceed as follows. Divide the trace of Fig. 3 into n equally spaced 
points a distance, d, apart. With the kth point is associated an ordinate, ak, that may 
be positive or negative. The mean is simply determined by using the discrete version 
of Eq. (51); vis., 

n 

E[x(t)] =+ a. c 
i=l I 

W-0 

The autocorrelation function is obtained from the discrete form of Eq. (53; 
VlZ., 

n 

r,(T) = ~ C ai ai+k 
i=l 

(70) 

where 7 = kd. The curve of rxx(7) vs T is plotted in Fig. 4. The general shape of this 
curve is typical of a wide variety of random phenomena of interest, such as vacuum 
tube noise, radar fading records, and atmospheric turbulence. It may be very closely 
approximated by 

r=(7) = A e -kITI cos c 7 

where A, k, and c are positive constants. The power spectral density may be obtained 
from Eq. (61); viz., 

Gm(w) = 2Ak 
w2+ (k2+c2) 

w4+2(k2 - c2) &I2 + (k2 + c2)2 1 
(72) 

The shape of this curve depends on the quantity (3 c2 - k2) and is depicted in 
Fig. 5. Consider now a special case of Eq. (71) in which A = k/2 and c = 0. It is not 
difficult to show that for these parameters, 

r#o 
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Figure 3. Single Noise Record 

Figure 4. Plot of Correlation Function 
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a. 3C 2- K2 < 0 

b. 3C2-K2 >O 

. 

Figure 5. Curves of Power Spectral Density 
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and 

Consequently, with r=(7) defined by 

r,e) = + e -kITI 

it follows that 

lim [r=(T)] = 6(T) 
k+a 

where 6(T) is the Dirac delta function*. This last relation simply states that successive 
values of the random function are completely uncorrelated, no matter how small the in- 
terval between successive samples. This is, of course, a mathematical abstraction 
that is never realized completely in practice. Nevertheless, this concept is a highly 
useful theoretical tool and closely approximates many important random phenomena 
(e.g. , Brownian motion). The idea of a purely random process, often called white 
noise, may be arrived at in many ways. Some of these are discussed in Appendix A. 
However, in general, we will say that a random process is white if its autocorrelation 
function is given by 

r&T) = B 6 (7) (73) 

where B is a positive constant. The power spectral density for Eq. (73) is obtained by 
direct application of Eq. (61); viz. , 

G=(o) = B 

Thus the power spectral density is a constant, which, by analogy with the 
spectrum for visible light, accounts for the name “white noise. ” 

(74) 

We now proceed to a discussion of the Wiener theory and some of its ramifi- 
cations. 

3.2 THE WIENER THEORY 

The transmission of information, whether by electrical, mechanical, social, 
or, indeed, biological channels, often has the effect of introducing extraneous signals 

*See Appendix A. 
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that materially corrupt the basic signal. To fix ideas, we consider a signal, fi(t) , 
made up of two parts as follows. 

fict, = fs’t’ + fn(t) (75) 

Quantity $(t) represents tbe uncorrupted signal, while fn(t) is the extraneous 
information. In the real world, we have available only fi(t), and it is natural to in- 
vestigate means of extracting the true signal, f,(t) , from its “noisy” environment. The 
term noise will be used in a generic sense to describe any extraneous and undesirable 
signals that corrupt useful information. 

Simple means of achieving this are well known and elementary. Thus, for 
exa.mple, if f,(t) is known to be concentrated in one frequency band while the noise is 
generally contained in another (often much higher) frequency band, simple passive 
filtering will serve to eliminate virtually all of f,(t) without disturbing f,(t). Again, if 
the noise is known to be restricted to one frequency or a very narrow range of frequen- 
cies (e.g. , the go-cycle hum in radio receivers), a narrow-band attenuator or notch 
filter will effectively “clean up” the signal. 

The problem becomes substantially more difficult when one considers not 
single signals, but whole classes of signals; both the basic signal and the noise can be 
described only in some statistical sense. Furthermore, f,(t) can be separated from 
fn(t) only if their statistical descriptions contain some distinguishing features. In addi- 
tion, there exists the problem of adopting some criterion of how well this separation is 
accomplished. 

Posed in this fashion, the problem is very formidable. By making three basic 
assumptions, Wiener (@ obtained an elegant solution and laid the ground work for all 
subsequent research in stochastic control theory. These assumptions are: 

a. The signal, f,(t), and the noise, g(t), are each members of a stationary random 
process. 

b. The device used to operate on fi(t) is a physically realizable linear filter. * 

c. The criterion to be used in selecting the “best possible” linear filter is the rms 
difference between the actual and desired outputs. 

By restricting the permissible operations to linear filters, we immediately 
have for the filter output 

f,o = / 
0 

h(T)fi(t-T)dT 

*A linear filter is said to be physically realizable if its transfer function has no poles 

in the right-half plane or on the imaginary axis. 
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where h(T) is the weighting function* of the filter. Since this filter is to be physically 
realizable, we must have 

h(T) = 0 for 7-C 0 (77) 

since a real system cannot respond before an input is applied. In this case, nothing is 
changed if instead of Eq. (76) we write 

fo’t’ = 
/ 

h(T)fi(t-T)dT 
,m 

(78) 

In what follows, it will be more convenient to use (78) rather than (76). If we 
denote the desired signal by fd(t), then the rms error is given by 

T 

= lim 1 
/ T-m 2T -T 

[fo(t) - f,(t) I2 dt (7% 

The desired signal, fd(t), may be any one of a multitude of functions of f,(t). 
Usually, we take 

f,(t, = fs(t, 

which constitutes the filter problem. If we let 

f,(t) = fs(t+ a) 

we have the filtering and prediction problem. In the absence of noise, the latter is 
called simply pure prediction. 

By substituting Eq. (78) in Eq. (79) and making use of the fact** that 

T 

rab(T) = lim 1 
J 

f 
T-m 2T -‘I’ a 

(t) fb(t+ 7) dt 

we obtain*** 

* See Appendix B. 
** See Sec. 3.1.2. 
***It has been assumed here that the signal and noise are uncorrelated; i.e., 

rsn(T) = 0. 
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7 = [h(T) dT jh(0) r(T-0) do 
-co 

- 2 J h(T) rid@) dT + rdd(o) 
,m 

Via conventional application of the variational calculus, it is found that the 
value of h(T) that minimizes Eq. (81) is given by the solution of the integral equation 

rid(T) - 
/ 

h(o) rii(T-u)dU = 0, 7 2 0 (82) 
-03 

This is the well-known Wiener-Hopf equation. This equation could be solved 
in routine fashion were it not for the constraint (77). As a matter of fact, if this latter 
constraint were neglected, one would obtain 

H(s) = 
GssW 

Gss(w) + Gm(w) Hd(S) (83) 

where 

H(s) = 1: t-WI 

Hd(s) = 1 

as 
= e 

if f,(t) = fi(t) 

if fd(t) = fi(t+ a) (84) 

and Gas(w) and Gnn(o) are the power spectral densities for fs(t) and fn(t) respectively. 

The solution of Eq. (82)) which takes account of condition (77), is summarized 
here as follows*. 

a. Given the power spectral densities, Gas(o) and Gnu(o), for the signal and noise 
respectively, replace w by s/j and form the sum 

Gii(S) = Gss(S) + G,n(S) (85) 

*Details of the analysis leading to the result given here may be found in Refs. 5 and 6. 
The method as outlined in this monograph appears to be substantially simpler than that 
given in most references. 
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Factor this quantity as follows. 

b. Form the function 

(0) 
H1 69 = 

GssW 
G1 (-a) Hd(s) 

w-4 

037) 

Here, Hd(s) is the trmSfer function relating fd(t) to f,(t). For example, if 
fd(t) = f,(t), then Hd(s) = 1. This is the case of simple filtering. If fd(t) = f,(t + a) 
(i.e. , filtering and prediction or pure prediction), then Hd(s) = eas. The right- 
hand side of Eq. (87) is expanded in partial fractions, and the inverse Laplace 
transformation of the physically realizable* terms is calculated. As a result of 
this operation, we have 

h+t) = 0 

(0) 
= hl 04 

t.<O 

t=-0 (88) 

C. By taking the Laplace transform of (88), we obtain 

H1(s) = x [hi(t) I (89) 

d. The transfer function of the required physically realizable linear filter is then 
given by 

H+s) 
H(s) = - 

G1 (~1 

The method is illustrated in the following examples. 

Examule 1: Given 

(90) 

Gss(w) = me?- 
1+LlJ2 

Gnn(w) = k2 

We seek to determine the optimum realizable filter for a prediction time in- 
terval, a. 

*i.e., those terms having poles in the left half plane only. 
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The following steps are a direct application of the procedure outlined above 
and require no further explanation. 

1 
Gii(s) = - +k2 = 1+k2 - k2s2 

l-s2 l-s2 

= GIW Gl(-s) 

where 

Now 

where 

G+s) = 
ks j/z+ 

1+s 

H 

A2 1 as 
e 

- ks 

A1 = 
1 

k+ 

A2 = 
k 

k+ l+k2 II-- 

Only the first term inside the bracket represents a physically realizable filter. 
Taking the Laplace transform of this yields 

h+t) = 0 t<o 

= A1 e-(t+a) t>o 

Consequently, 

HI(s) = 1: CA1 e -@+a), 

Al ema 
= 

s+l 
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We have, finally, 

Hi(S) 
H(s) = - = 

A1 eea 

G1(s) 
ks+ 

This is the transfer function of the required optimal linear filter. 

Example 2: The given power spectral densities are 

Gas(w) = $ ’ 
(w2 ++ 

2 (w2+2) 
GmW = ‘;; 

(a4 + 4) 

As in the previous example, it is required to determine the optimum filter for 
a prediction time interval, a. 

Proceeding as before, 

Gii(s) = $ ’ 
2 (2-s2) +-- 

(; - s2) 7r (4+s4) 

= 8 (s2+2.264s+2.031)(s2 - 2.264s + 2.031) 
71 -s) (s2+2s+2) (s2 -2s+2) 

We have therefore, 

(0) Gss(s) 
HI (s) = - G1 (-s) Hd(S) 

as 
where Hd(s) = e . This leads to 

(0) 
H1 (s) = & (s 

2 -2s+2) eas 

(s+$(s2 -2.264s +2.031) 
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Expanding this in partial fractions and taking the Laplace transform of the 
physically realizable portion results in 

hi(t) = 0 t<g 

s l/2 

0 

-1.5(t+ a) = 
2R 

x 0.9444e t>o 

Therefore, 

2.004 e 
-1.5a 

HI(s) = - 

Ii- 71 @ + 

and finally, 

Hl@) 
H(s) = - 

G1 6) 

which, in expanded form, becomes 

0.7085 e 
-1.5a 2 

H(s) = 
(s +2s+2) 

(s2+2.264s+2.031) 

Example 3: The given spectral densities are 

1 
GssW = - 

4+w2 

Gm(w) = 25 
25+ w2 

We seek to determine an optimal realizable filter (no prediction in the present 
case). 

The following steps are again self-explanatory. 

1 
Q.(s) = - 

q-s2 

G,nW = 
25 

25-s2 
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and 

1 
Gii(s) = - + 

25 

4-s2 25-s2 

5.0990 = (s + 2.1926) 
(s + 2) (s + 5) 1 1 

G+s) = 
5.0990 (s + 2.1926) 

(s+2) (s+5) 

H:)(s) = l x (2 - s) (5 - s) 

(4 - s2) 5.0990 (2.1926 - s) 

0.6696 
(2.1926 -s) 3 

h+t) = 0 

= 0.3274 e -2t 

0.3274 
H1(s) = x 

and finally, 

0.3274 
H(s) = (S X 

(s + 2) (s + 5) 
5.0990 (s + 2.1926) 

t<o 

= 0.0642 (s + 5) 
(s f 2.1926) 

Remark: It is pertinent at this point to review the significance and interpretation of the 
results thus far obtained. What has been done essentially is to consider a 
class or ensemble of signals about which only limited statistical data is avail- 
able, namely the autocorrelation function*. The signals are corrupted by 
additive noise for which the autocorrelation function is also known. What has 
been done is to derive the form of a physically realizable linear filter that is 
optimum in the sense that the rms error between the actual and desired out- 
put is minimized. 

*The power spectral density gives the same information since these are related by 
Eqs. (61) and (62). 
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Let us suppose that in Example 1, for instance, there is no noise pres- 
ent. We find in this case that the optimum filter is simply an attenuator of 
the form H(s) = eBa, where “a” is the prediction interval. This result is 
somewhat surprising, since it states that the “best” prediction of the signal 
is merely a constant (less than unity) times the present value of the signal. 
The usefulness of this result may be seriously questioned. It is, however, 
the solution to the problem under the conditions stated. It is certainly the 
most that can be expected if the available statistical information of the signal 
is limited to the correlation function (or power spectral density), and the 
optimum operator is to be a linear filter, optimal in the least-square sense. 
In short, limited data can yield only limited information. We note in passing 
that in the case of pure filtering (and no noise), the optimum filter reduces 
to H(s) = 1, which of course is in accord with physical intuition. 

The methods discussed here have been extended in various ways. In the cases 
thus far considered, it has been assumed that an infinitely long record of the signal has 
been available. This assumption simplified the mathematics leading to Eq. (82)) the 
Wiener Hopf equation. If the integration limits are replaced by finite values, the mathe- 
matical complexities are increased considerably. Furthermore, if the signal is not of 
the stationary type (that is, if its autocorrelation function is not invariant under a time 
translation), then the previous results are not applicable. These extensions are treated 
in the literature( ?” 12). The analyses are extremely complex, and it is difficult to re- 
tain a physical grasp of the situation, which is so necessary for practical application. 
In this respect, a significant breakthrough has been made by Kalman(13’ 14), who has 
interpreted the Wiener problem in terms of conditional expectations and state transition 
concepts. He has thus not only simplified the mathematical aspects, but has also dis- 
played the results in a manner permitting application to a wider class of problems and 
reducing the problems of finite data and nonstationary effects to manageable proportions. 

This approach will be considered in the following sections. 

3.3 THE KALMAN THEORY 

The Wiener problem is concerned with finding a linear filter that minimizes 
the mean-square error between actual and desired output when information on the signal 
and noise is specified in terms of power spectral densities (or correlation functions). 
As noted in the preceding section, the analysis leads to an integral equation whose solu- 
tion yields the impulse response of the required filter. Serious complications are intro- 
duced in the case of finite memory or nonstationary processes. 

The approach adopted by Kalman(13 ’ 14) yields a much simplified mathematical 
structure that includes all the situations mentioned above as special cases. Further- 
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more, the form of the solution permits a wider range of application; the result is not 
merely an optimal filter, but an algorithm for obtaining optimal measurements of 
(deterministic) dynamic systems corrupted by additive noise. This noise may act on 
the dynamic system, the measurement, or both. The fundamental premises in Kalman’s 
analysis are : 

a. Arbitrary random signals are represented as the output of a linear dynamic system 
excited by white noise. 

b. The concepts of state and state transition are used throughout. 

c. If the minimum mean-square error is adopted.as the optimality criterion, then the 
best estimate of a signal is given by the conditional expectation 

E cx,(tQ 1 y($-,) 3 y(t,), . . . . . . Y F,) 1 

We shall discuss these in turn. The first premise involves the concept of a 
“shaping filter, ” which has been considered in the previous section in a somewhat dis- 
guised form. By definition, a shaping filter for an arbitrary random process with a 
power spectral density, Gyy(w), has the property that a white noise input generates a 
random process having the same power spectral density. Referring to Eq. (63), and 
letting G=(O) = k2 (i.e. , white noise), we see that the shaping filter, Y(jw), is de- 
fined by 

Gyy(w) = k2 Iyciw)12 (91) 

When the power density spectrum, Gyy(o), is a real-valued, even, nonnegative 
function of w for all real values of 0, then Eq. (91) may be solved for Y(jw), which is 
in fact physically realizable (i.e. , there are no poles or zeros in the right half plane). 

The simplest means of doing this has already been indicated in Eq. (86); 
namely: replace o by s/j in Gyy(w) and form the expression* 

Gyy(s) = Y,(s) Y,W 

The term Y,(s) is the shaping filter for Gyy(U). 

The following examples illustrate the calculation of the shaping filter for given 
power spectral densities. 

Example 4: 

1 
GssW =- 

1+w2 

*We have assumed that the white noise, G=(w) = 1. 
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GssW - -5 = (i&&h) 

1 
Y,(s) = l+s 

Example 5: 

GssW = 
25+w2 

4+w4 

Gss(s) = 5 = [L+2l [s2P2ss+21 
and 

Y,(s) = 
5+s 

s2+2s+2 

Example 6: 

GssW = 
169+ w2 

a4 + 238w2+ 16g2 

Gss(s) = 
[ s2+:::16,1 [ s2-:;:169] 

Y,(s) = 
s+13 

s2 + 24s + 169 

Kalman’s second premise involves the use of the concepts of state and state 
transition. Thus, instead of expressing the transfer function in terms of the complex 
variable, s, it is used merely to relate the output-input function in state transition 
terms in the time domain. In general, the shaping filter, Y,(s), may be written as 

n 

c 0 . . s1 

e(s) 
i=O n-l 

Y,(s) = cpo = m , rnrn 

c CY .S1 
j=o m-J 

(93) 
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It can be shown* that the input-output relation expressed by this transfer func- 
tion may be written in terms of a vector matrix differential equation as follows: 

;c = Ax+bqy (94) 

Here A is a constant n Xn matrix and x and b are n vectors. The components of the 
state vector x are linear functions of 8 and cp, while the components of the b vector are 
constants. In what follows, the form (94) will be used in preference to (93). 

The third premise adopted by Kalman is that conditional expectation rather 
than variational calculus may be used to solve the problem of optimal filtering and pre- 
diction. This observation requires closer scrutiny, involving the concept of a con- 
ditional probability distribution, which is defined as follows (5). 

Prob [x(tn) Sxnlx(tl) = x1;x(t2) = x2;.......;x(tnm1) = “,&I 

X 

J 

n 
f,(x1’ t 1; X2’ t2 ; . . . . . . . ;x n’ tn) dxn 

= Q(x,, = irn 
n-l 

(x 1, tl; x2, t2; . . . . . . . ;x n-l’ - tn l) (95) 

where $I( ) has the meaning defined by Eqs. (32) and (33). In words, ik (xii) is the 
probability that x(tn) takes on a value less than or equal to xn, given that x(tl), x(t2), 
. . .‘. . . . , x(tnel) have taken on the values, x1, x2; . . . se1, respectively. The con- 
ditional mean or expectation is defined by 

E[x(tn)) x(t,) = Xl; X(t,) = X2; *--***-; x(tn-l) = “,-$ 

= 
J x(t,) d Q n 6,) 
-m 

(96) 

Suppose now that we are given a signal x(t) and a noise n(t). Only the sum 
y(t) = x(t) + n(t) can be observed. Assume that we have observed and know the values 
of Y(Q) 3 Y (t2) 9 . . . . . . . Y t&-l) exactly. What can be inferred about the value of x(t)? 
If we know the conditional probability distribution 

QCX,) = ProbIx(tJ ‘x,1 y(t,) = yl; . . . . . . . . y(t,-,) = ynB1] WI 

then this conveys all the information derived by the measurements y(tl) , . . . . . . y(tnml). 
Any statistical estimate of x(tl), denoted by X(t,), will then be some function of Q(xn). 
In general, the value of X&J will be different from the actual (but unknown) value of 

*Details may be found in Ref. 15, p. 108-110. 
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x&J. A rational method of determining some optimal estimate X(tn) is to define a 
function of the estimation error, C, and try to minimize this. Let a loss function be 
defined by 

L(E) = L(-r) 

L(0) = 0 (98) 

L(c2) 2 L(c~) when c2 > cl 2 0 

where 
c = x’t,) - xct,, 

An optimal estimate may then be determined in straightforward fashion, using 
the following result due to Sherman(l8). 

Theorem I: Assume that L(C) satisfies (98) and that the conditional distribution func- 
tion, ‘k(xn), defined by Eq. (97) is such that 

(4 Wn - zn) = 1 - ‘k(iin-xn) 

03 \k [Ax;) -t (1 -X) xr) 1 g x 9 (x;)) + (1 - X) *(x,“‘) 

(1) (2) - for all xn , xn sx,andO rXs1, where%isthemeanof$!(xn). 

Then the estimate X&J of x(t,) which minimizes E[L&) ] is the conditional 
expectation 

E[x(tn) 1 y(t,) = yl; . . . . l l l ; Y(t& = y& 

In short, if the conditional distribution function is known to satisfy certain 
conditions, then the optimal estimate is merely the conditional expectation. In certain 
cases, even these restrictions may be removed. According to a theorem by Doob(‘), 
if L(r) = C2, then Theorem I holds without restrictions (A) and (B) . Furthermore, if 
random processes x(t) and n(t) are Gaussian, then Theorem I holds, since quantity y(t) 
must also be Gaussian. 

We have shown that under certain conditions, an optimal estimate of a signal 
corrupted by additive noise may be determined via conditional expectation. But, in 
general, the conditional distribution function is not lolown, nor is it known what general 
class of such functions satisfies (A) and (B) of Theorem I. Some progress can be made 
only if one can justifiably assume that the random processes considered are Gaussian. 
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Now if the random processes are Gaussian, then it is known that the mean- 
square-error criterion yields a linear optimal estimate. Also, since the calculation 
of this estimate involves only the means and covariances of the Gaussian process, then 
this estimate is also optimal for any random process with the same means and vari- 
ances if the optimal estimate is required to be linear. 

This, then, forms the basis for formulating the problem in the following 
manner. 

Statement of the Problem 

I. Continuous Case 

Given the dynamic system 

dx 
dt = A(t) x + B(t) w(t) 

The observed signal is 

(99) 

z(t) = M(t) x + v(t) (100) 

where A(t) and B(t) are n X n matrices, x is an n vector, z(t) is an m vector, and M(t) 
is an m xn matrix; w(t) and v(t) are n and m vectors respectively, representing inde- 
pendent Gaussian random processes with zero means and covariance matrices* 

E[w(t) iT( = Q(t) S(t-7) (101) 

E[v(t) vT(r)] = R(t) S(t-7) (102) 

E [v(t) wT(r) ] = 0 (103) 

where 6 is the Dirac delta function and Q(t) and R(t) are symmetric nonnegative definite 
matrices continuously differentiable in t. 

It is assumed that the measurement of z(t) starts at some fixed instant, to, 
(which may be -a), at which time P(tO) = E [x(t,) xT(to) ] is known. 

The optimal estimation problem is then formulated as follows. Given the 
known values of Z(T) in the interval to 2 T s tl, 
minimizes the function, E(c2), where 

. find an estimate 2(t, I t) of x($) that 

c = x(tl) - “(tl 1 t) 

*The superscript T denotes matrix transpose. 
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If tl < t, this is called the smoothing problem. If tl = t, this is called the 
filtering problem, while for tl > t, we have the prediction problem. 

II. Discrete Case 

Given the dynamic system 

x(t+l) = @ (t+l, t) x(t) + r (t+l, t) w(t) (104) 

The observed signal is 

z(t) = M(t) x(t) + v(t) (105) 

where @ (t+l, t) and lY(t+l, t) are transition matrices* and the other symbols have the 
same meaning as in the continuous case except that in Eqs. (101) - (103) the numbers 
t and T are integers. In other words, w(t) and v(t) are constant during the sampling in- 
terval (which in the present case has been normalized to unity). 

The optimal estimation problem is as stated in the continuous case except that 
instead of being given z(7) in the interval k s T 5 t, we are given the sequence of 
measurements, z (0)) z (1)) . . . . . . . , z(t). As before, we are also given the initial co- 
variance of x(0) ; namely, P(0) = E [x(O) XT(O) 1. 

Remark: In the problem statement, Eqs. (99) and (104) constitute models of the 
message process; that is, the statistical properties of the message are 
represented as the output of a linear system excited by white noise. If the 
white noise is Gaussian, then the system output is Gaussian. Furthermore, 
given any random process with known first- and second-order statistical 
moments (averages), one can find a unique Gaussian process with the same 
moments. In line with the earlier discussion, if one seeks an optimal linear 
estimate that minimizes an rms error, the same result will be obtained if 
the process is assumed Gaussian; for then, under the same optimality cri- 
teria, the result will be an optimal estimate that is linear. It should be 
emphasized that these observations are valid only when one considers statis- 
tical moments no greater than second order. 

Given now the first and second statistical moments, how does one obtain (99) 
and (104) ? This is largely an unsolved problem, and we are compelled to start with 
these models and consider the question of how to obtain them as a separate problem: 

*Transition matrices are discussed by Tou( 18) and also in part 1 of Vol. II of the pres- 
ent series ,of monographs. 
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There is one exception. If the statistics of the message are known in the form of a 
power spectral density or an autocorrelation function (of the stationary type), then one 
may obtain Eq. (99) from the shaping filter for the message in the manner described 
by Eqs. (92) - (94). 

Having stated the basic problem, how does one obtain the solution? As noted 
earlier, Kalman showed that the optimal estimate may be obtained by calculating con- 
ditional probabilities; the details of the procedure may be found in References (13) and 
(14). The analysis relies heavily on the methods of abstract probability’theory, which 
are not readily accessible to control engineers. It has been shown by Greensite(26) 
that Kalman’s solution may be derived from first principles in dynamic programming 
theory. Since most control engineers are now well acquainted with the basic ideas of 
dynamic programming, we will adopt this approach in obtaining the solution to the prob- 
lem.* 

We consider first the discrete case as given by Eqs. (104) and (105). For ease 
of writing, we will use the following abbreviations. 

x(t) = Xt 

z(t) - z 
t 

etc. Also 

@(t+l, t) = Ot 

r(t+l, t) = rt 

M(t) = Mt 

By virtue of Bayes law, we have 

Prob[xo, 
***‘***’ xt+l I Z()’ . . . . . . . , Ztl 

= Prob[zo, ....... , z 1 x t 0 ’ . ..*...‘.xt+ 1 1 Prddxo, .....,xt+l 1 
Prob [zo, , Ztl (106) ...... 

We note that 

Prob[zo, ....... z Ix t 0 ........ Xt+l’ 

= Prob[zo, ...... z Ix t 0 ...... , xtl 

since the probability of the sequence z 0 , . . . . . , zt is independent of x t+1’ 
*An outline of Kalman’s approach is contained in Appendix E. 
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Furthermore, 

Prob [z,, . . . . . , z Ix t o, xl = . . . . . , t h Prob[ 
i=O 

zi-Mixi’ 

via (105) and the independence of v t . 

We have also(“) 

Prob[xo, . . . . ..xt+ll = Prob[xo]Prob[xllxo] Prob[x21xl,xo] . . . 

. . . . . . . . mob [xt+l Ixt9 . . . ..( “0’ 

But since the random disturbance is independent, it follows that 

Prob[xi Ixi-1,. . . . . . . . , x01 = Prob[xi(xi..ll 

Consequently, Eq. (106) may be written as 

Prob[xo, . . . . . ., xt+l lzo. . . . . . . , Zt’ 

t t+1 
n Prob Czi - Mi xi 1 Prob[xo 1 Z7 

= i=O i=l 
Prob [xi 1 x-1 I 

Prob[zo, . . . . . . . , Zt] 

(108) 

In accordance with the previous discussions, we assume that x0 is Gaussian 
with mean 

Wo) = P (110) 

and covariance 

Eke -pC)(Xo-P)Tl = PO 

But since 

mob Cxt 1 xtml 1 = Ct exp 

(111) 
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where 

and 

equation 

where 8, 

ut = rtQtr,T (112) 

Prob[zt-Mtxt] = yt exp - $ (z~-M~x~)~ Ril(zt-Mtxt) 
L 1 

(109) may be expressed in the form 

Prob[xo, . . . . . . . , x t+l Iz z]=Btexp -1 o’ l *.****, t 

1 2 txo 
t 

1 -- 
2 I[ 

(z 
i=O 

i -MixijT R;‘(zi -Mix) 

+ lxi+l - (PiXijT u;l(xi+l - ipiXi) II 
depends only on the sequence, zo, . . . . . . , zt, and lmown constants. 

(113) 

Since the random effects are white and Gaussian, the least-square estimate 
and the maximum likelihood(l’) estimate are identical(20). The problem is then re- 
duced to one of choosing the sequence x0, . . . . . . , xt that maximizes the quantity in the 
braces of Eq. (113) or minimizing the quantity 

t 

J T 
t+1 = 6 0 -cl) c[ (z 

i=O 
i - Mi x~)~R;‘(z~ - Mi xi) 

+ 6 i+l - cPi xi)Tu;l@i+l - cpi Xi)] (114) 

This is precisely a multistage decision process to which the methods of dy- 
namic programming are directly applicable. 

Let us define 

f t+1 txt+2 = Min 6 

xoy*--~yxt 

+ (z i-Mi~i)TR;l(zi - Mi xi) + (xi+ 1 - Oi xi%, ‘(xi+ 1 - ‘pi xi) 11 (115) 
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Via the Principle of Optimality(21), we have 

ft+l’xt+l’ = Min k, -MtxtjT R;‘(zt-Mtxt) 

xt 

which, after some rearrangement, may be written as 

ft+l’xt+l’ = Min [xF(M~R~‘M~+ 

xt 

T - 2(z;R;‘Mt + ~~+lU;‘@~x~+z~R;‘z~ 

T -1 
+ xt+l t u xt+l t +f c”t’l (116) 

We now assume a solution of the form* 

ft(xt) = x&xt - 2b;xt + c 
t (117) 

where A, is a symmetric n xn matrix, bt is an n vector, and ct is a scalar, all of 
which are for the moment unknown. Substituting this back in (116)) we obtain, after 
some reduction, 

ft+ltxt+l’ = Min $Ltxt 
xt 

- 20;xt + zTR-‘z 
t t t 

T -1 
+ Xt+lUt xt+l + Ctl 

where 

Lt = M;R;‘Mt + +;l@t + A, 

=t 
= bt + ~+J;‘x~+l+ Mt’ R;’ zt 

W3) 

W-J) 

(120) 

The value of xt that minimizes the quantity in the brackets in Eq. (118) is 
readily found to be 

“t 
= Lilat (121) 

*This particular form of ft (xt) is suggested by the fact that the criterion function (104) 
is a quadratic form, and the state equations are linear. 
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where 

Substituting this back in Eq. (118) and simplifying, we obtain 

ft+l(xt+l) 
T T 

= xt+1 $+lxt+l- 2 bt+lxt+l + %+I 

A t+1 = +I- at L;l a; u;l) 

b 
t+1 

= TJ;I@~L;‘@~+M~R 
t ;lZt) 

ct+l = z;R;’ (I-Mt L;‘M;R;‘) zt 

- 2b;L;1MTR-1z 
.t t t 

- b;L;lbt -ct 

(122) 

(123) 

(124) 

(125) 

The function ft+ 1(xt+ 1) may be interpreted as follows. Let “a” be any value of 
xt+l’ Then -ft+l< a is a measure of the likelihood of the most probable sequence of ) 
states, x9 , . . . . . , xt+l, in which xt+I takes on the particular value, “a”, given the ob- 
served sequence, zo, . . . . . . , zt and the a priori distribution on x0. An optimal choice 
of “a” is that which maximizes the likeiihood function and which, for white Gaussian 
statistics, is also the one which minimizes the mean-square error. From Eq. (122)) 
the optimal value of xt+I is found to be 

* 
xt+l = A;:1 bt+l (126) 

Substituting Eqs. (119), (123), and (124), we find, after some lengthy reduction, 

* 
xt+l = cpt(I+H;1~~Ut14t)(Ht+~~U;1~~-1@t+~tT~;1~t) (127) 

where 

Ht = AttMTR -1. 
t t 

H 
t Wf3) 

A crucial simplification of Eq. (127) may be obtained by making use of the 

following relation (22) . 

lC1 - c2 c;l c4)-l = -1 
c;1+c;1c2(c3-c4c;1c2) c4c;l 

c1 = m X m matrix (nonsingular) 

c2 q m X n matrix 

(129) 

c3 E nX n matrix (nonsingular) 

c4 q n X m matrix 
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Using the above relation, Eq. (127) reduces to 

* 
xt+l 

= @,A;‘b, - *tA~lMt’cM,^;‘Mt’+R~-lMtA~lbt 

-1 
+ 4tA;1M;fMtA;1M,T+Rtl zt (130) 

We now seek to obtain the physical significance of the matrix At. For t = -1, 
we find, from Eq. (115), 

fo(Xo) = (r. -14Tp;1(xo-p) 

T =x P o ;lxo - 2~TP;lxo+~TP;l~ 

while from Eq. (122), 

fo(xo) = x; Aox -2b;xo+c 0 

This permits us to equate terms as follows. 

A0 = “01 

bO 
= P& 

cO = PTP,‘@ 

-1 
Consequently, we may interpret At as the covariance matrix, Pt. 

Noting further that Eq. (126) enables us to write xl for Ptbt, we find that Eq. 
(130) reduces to 

g(t+ljt) = @(t+l, t) ;i(tlt-1) + K(t) [z(t) -M(t)ii(t/t-l)] (13 1) 

K(t) = @(t+l, t) P&It-l)MT(t) [M(t) P(tlt-l)MT(t) +R(t)]-’ (132) 

Here we have reverted to the original notation of the problem, and have written 
2(t+lI t) for x:+1 to conform with the common notation in the literature. 

It remains to determine the recurrence relation for the covariance matrix, 
P(t+llt). This may be obtained from Eq. (123) by taking the inverse, applying Eq. (129), 
and then substituting (112) and (119). The end result is 
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P(t+llt) = @(t+l, t) {P(tlt-1) - P(tIt-1) MT(t) [M(t) P(tlt-l)MT(t) 

+ R(t)]-‘M(t) P(tlt-l)] aT(t+l, t)+r(t+l, t)&(t) rT(t+l, t) (133) 

Here, obviously, P(to 1 to-l) = P(to) = PO, which is assumed given. This rep- 
resents a type of initial condition. Eqs. (131) - (133) represent the solution to the 
problem in the discrete case. It can be shown(23)that 

p(tlt-I) = E[??(tIt-1) zT(tIt-l)l (134) 

where 

Z(tIt-1) = x(t) -a(tlt-1) (135) 

Fig. 6 depicts both the dynamic system of Eqs. (104) and (105) (i. e. , the 
message) and the optimal filter described by Eqs. (131) - (133). 

If the unit interval for the discrete case solution is allowed to approach zero, 
we obtain the solution for the continuous case, Eqs. (99) and (100); viz. , 

dR(t= 
dt A(t) ?(t I t) + K(t) [z(t) -M(t) ;i(t 1 t) I , optimal estimate (136) 

K(t) = P(t) MT(t) R-‘(t) , optimal gain (137) 

dP(t) 
dt = A(t) P(t) + P(t) AT(t) - P(t) MT(t) R-‘(t) M(t) P(t) 

+ B(t) Q(t) BTW 9 variance equation (139) 

The limiting process is a matter of some delicacy because of the presence of, 
Dirac delta functions. However, the procedure can be made mathematically legitimate 
by a sufficiently sophisticated analysis. A typically “engineering type” of proof (which 
therefore involves some compromise with rigor) is contained in Ref. 23. 

Eq. (136) is the optimal estimate for the filtering case. For optimal filtering 
and prediction, we add the relation 

5Qt1 It> = qt,, t) 2(t 1 t) (139) 

t1 25 t 

case. 
Fig. 7 is a block diagram for the message and optimal filter for the continuous 
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w(t) * F(t+l, t) 
x(bl) unit 

* Delay 
x(t) _ 

b MU) 
4 

w+1, t) 4 

Figure 6. Model of the Message and Optimal Filter Discrete Case 



Figure 7. Model of the Message and Optimal Filter Continuous Case 



The optimal filter is in general nonstationary, because A(t), Q(t+l, t), and 
M(t) are time dependent. If, in fact, these quantities are constant, then as t+m, the 
system (136) - (138) reduces to the classical Wiener solution. 

It is worthy of note that the derivations given here are not affected materially 
by the fact that the system is nonstationary or that the available data is finite. The 
analysis leads directly to the form of the optimal filter without the extraordinary mathe- 
matical complications that characterize the classical approach. 

3.3.1 Interpretation of the Kalman Filter 

Before considering some direct applications of the Kalman theory, it is in- 
structive to examine the physical significance of the operations described by the esti- 
mation equations. In order to simplify the situation without eliminating the essential 
features, consider the problem of estimating the components of a constant n vector, x. 
The only available measurement is of a linear combination of the components of x which 
is contaminated by white noise. Mathematically, this corresponds to the system (104) 
and (105) with @(t+l, t) = I, w(t) q 0, and M(t) = M = constant. In the present case, M 
is a known m X n matrix and we are given the initial covariance, PO. For simplicity, 
it is assumed that R(t) = I. 

The optimal estimation equations (131) - (133) may therefore be written as 

A 

xt+ 1 = jit+K (z t t-M+) 

Kt = PtMT(MPtMT+I) 
-1 

P = Pt-PtMT(MPtMT+I) 
-1 

t+1 
MPt 

where we are again using the simplified notation. 

Making use of the relation (129), Eq. (142) simplifies to 

P 
-1 
t+1 

= P;l+MTM 

But Eq. (142) can also be written as 

-1 
Pt+l(Pt+l 

-pi’) = PtMT(MPtMT+I)-‘M 

which, by virtue of (143)) becomes 

(143) 

MT = PtMT(MPtMT+~ 
-1 

Pt+l 
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Repeated application of this equation yields 

PtM 
T =P t-l MTW ptBlyT+ r)-l 

= P t 2MT(2MPt 2MT+I)-1 

= PoMT(tM PoMT+I) 
-1 

For t sufficiently large, this becomes 

T PtM =+ 

Substituting 

2 
t+1 

= 2, 
t 

T -1 PoMTWOM ) 

(141) and (145) in Eq. (140), we find 

PO MT(M PO MT)-$ztM )‘J 

(145) 

(146) 

This equation is in the form of a multidimensional stochastic approxima- 
tion(24 9 25). Th e correspondence between the two concepts is intriguing and suggestive 
of the underlying unity between statistical estimation procedures. 

Let us now assume that M is an n Xn matrix which is nonsingular. This corre- 
sponds to the usual observability condition (27). Eq. (146) then simplifies to 

A 1 
Xt+l = &t+ t+1 -i (x+M-‘v,) 

By repeated application of this equation we have 

jit+l 
t-1 A 

= t+l xtwl+& b~+M-~(v~+v~$ 

t-j A z-x 
t+l t-j 

For j=t, this becomes 

t 

2 
t+1 

= & (t+l)x + 

t+1 
1 =- 

c t+l i=l 
M-l zi (147) 
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which is precisely the weak law of large nGnbers(2). Another way of writing Eq. (147) 
is 

t 

it+l 
1 

= x+t+li-o c M-l vi 

In other words, for sufficiently large t, there is virtual certainty that %+, is 
the true value of x. Note that the variance matrix (145) becomes (for M an n X n matrix) 

Pt = + (MTM)-’ 

For sufficiently large t, this approaches zero as expected. 

3.3.2 Calculation of the Kalman Filter 

In this section, we will illustrate the determination of the optimal filter, via 
the Kalman equations, in two simple cases. More realistic applications of practical 
importance will be considered in Sec. 3.3.4. 

Example 7: The given data is the same as that of Example 1 in Sec. 3.2. In order to 
use the Kalman theory, it is necessary to express the power spectral density of the 
message as the output of a linear dynamic system excited by white noise. Thus the 
shaping filter for 

Gss.W = L 
1+w2 

is readily found to be 

GIW = & 

Expressed in the time domain, in the form an,alogous to Eq. (99), this becomes 

;r = -XfW 

where w is white noise having a power spectral density of one, which means that 

E[w(t) wT(7)] = 6(t-7) 

The observed signal is 

z = x+v 

where the power spectral density of v has been given as C&(w) = k2; consequently* 

*It is assumed that E [w(t) ] = E [v(t) ] = 0. 
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E[v(t) vT(r) = k2 S(t -7) 

Fig. 8 is the schematic of this system. The solution for the optimal filter is 
given by Eqs. (136) - (138), where, in the present case, 

A(t) = 1 

B(t) = 1 

M(t) = 1 

Q(t) = 1 

R(t) = k2 

Each of these quantities is scalar. We have, therefore, 

d 2 (t 1 t) - = - ;i.(tlt) + K t-z(t) -%tlt) 1 
dt 

K 
P =- 
R 

0 = -2P 
P2 

-y+Q 

The quantity dP/dt has been set equal to zero in Eq. (138), since we are 
seeking the steady-state (time-invariant) form of the optimal filter. From the above 

Figure 8. Schematic of Message Model for Example 7 
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equations, we find that this filter has the form shown in Fig. 9. The corresponding 
transfer function is 

-L g(tt)= K 
Z s+l+K 

Solving for P in the quadratic equation given previously, and substituting in 
K, we find that this solution corresponds with that given in Example 1 of Sec. 3.2. The 
inclusion of the prediction interval, a, requires that we use Eq. (139), where, in the 
present case, 

Q(t,, t) = e-(tl-t) = eea 

where tl-t = a is the prediction interval. 

Example 8: It is sometimes required to design an optimal realizable filter for two 
related messages, the measurement of each of which is corrupted by additive noise. 
For example, suppose that the power spectral density of a velocity signal is hg2/w2 
while for the position signal it is hfl/w4. Measurements of velocity and position are 
corrupted by additive white noise. Some problems of this type have been treated by 
Bendat(28)using the classical Wiener theory. The analysis is characterized by some 
intricate mathematics in which it is difficult to obtain physical insight. Using the 

Z 
b 

Figure 9. Schematic of Optimal Filter for Example 7 
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Kalman approach, however, a simple and physically plausible solution is obtained in a 
straightforward manner. From the power spectral densities given above, it is easy to 
obtain the shaping filters which, in turn, lead to the message model shown in Fig. 10. 
Here x2 and x1 represent the velocity and position respectively, while z2 and z1 are 
the respective measurements. The equations of the message model are given by 

. 
x1 =x 2 
. 
x2 =W 1 

and for the measurements, 

z1 = hllxl+v 1 

z2 
= h22x2+v2 

These equations may be written in the matrix form corresponding to (99) and 
(100)) noting the following equivalence. 

Figure 10. Model of Messages for Example 8 
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h 0 
M= 11 [ 1 0 h 

22 

The optimal filter is given by Eq. (136); viz. , 

dW) = 
dt [A - k (t) M 1 ?(t 1 t) + k (t) z(t) 

Fig. 11 is the schematic for this filter. Note that this is time varying, since, 
in the general case, only finite data is available. A time-invariant form results when 
t-a, since, for this case, P becomes a constant (corresponding to the classical assump- 
tion that an infinitely long past record of the signal is available). 

To solve the problem in the case of finite data one must be given the quantity*, 
P(0) which is written in the form 

P(0) = 
~llP) U12P) [ 1 u2p u22P) 

where u12(t) = Gus since P(t) is a symmetric matrix. 

From Eq. (138), we find 

. h211 o:1 h:2 o;2 
Oil = 2U12 - 

rll r22 

. h~W12 h:2 52 u22 
O12 = u22- rll r22 

. 
O22 

*See Eq. (111) and the discussion following Eq. (133). 
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* 
) k 21 

A 
1 x1 -- 
S 

+ k 22 I 

1 
+k 12 

Figure 11. Model of Optimal Filter for Example 8 

The optimal gains are given by Eq. (137); viz. , 

k = 
hll all 

11 rll 

k = 
hll O12 

21 rll 

k = 
h22 u12 

12 .r22 
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k = h22 u22 
22 

r22 

In order to obtain some numerical results, let us .assume that 

h =l 
11 qll = 1 Ull(0) = 1 

h 22 = 2 
rll 

= 16 U12(0) = 0 

r22 = 
1 u22(o) = 0 

The solution for the variance and optimal gains is shown in Figs. 12 and 13 
respectively. Kalman(14) shows that under mild restrictions, a steady state is reached 
which is equivalent to the time-invariant optimal filter. This steady state is apparent 
in the present case. Note that the initial values of the time-varying parameters of the 
filter are strongly dependent on the assumed values for uij. However, the final steady 
state is independent of the assumed values, which is plausible, since with increased 
information available, the initial assumptions play a vanishingly decreasing role in de- 
termining the form of the filter. Note that the steady-state values for kij and Uij could 
have been obtained directly from the u equations by assuming ?Jij = 0 and solving the 

1.6 - 

0.8 - 

u22 

Time (seconds) 

Figure 12. Solution of the Variance Equations of Example 8 
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- 0.08 

- 0.06 

Time (seconds) 

Figure 13. Optimal Gains in Example 8 

resulting set of algebraic equations. For high-order systems, however, this is a diffi- 
cult process, and it is much simpler to integrate the variance equations until a steady 
state is reached. The speed with which one converges to this steady state is, of course, 
dependent on how good is the initial estimate. 

3.3.3 The Problem of “Colored” Noise 

The Kalman filter for the continuous case, as described by Eqs. (136) - (138), 
is based on the fact that the measurement noise, v(t) in Eq. (100)) is white and nonzero. 
If indeed v(t) were identically zero (i.e. , the measurement is perfect), then the vari- 
ance equation (138) would be singular, since R(t) would be a null matrix. Furthermore, 
the analysis leading to Eqs. (136) - (138) is based on the assumption that v(t) is white; 
i.e., successive values for small intervals are essentially uncorrelated. The case 
where v(t) has a power spectral density that is not a constant cannot be treated within 
the framework of the theory thus far presented. This gap has been filled in a recent 
paper by Bryson and Johansen(2g), which treats the general case of measurements 
corrupted by colored noise, white noise, no noise, or any combination thereof. The 
details of the general procedure are quite lengthy, and we will accordingly describe 
only one special, though important, case. The reader is referred to the aforementioned 
reference for a complete treatment. 
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It is assumed that the process (message) is described by 

. 
x1 

= Fllxl+u 
1 (149) 

where x1 and u1 are r vectors, and Fll is an r X r matrix, which, in general, is time 
varying. Also 

E h,(t) 1 = E[x+t)] = 0 (149) 

E[ul(t)+l = Q,(t) 6(t-7) (150) 

E Lx, (0) x;(O) 1 = P1 (0) (15 1) 

The measurements are given by 

y = C1xl+m (152) 

where y is a p vector, Cl a p X r matrix, and m a p vector representing colored noise. 

As might be expected, the procedure involves the representation of the statis- 
tical properties of m as the output of a linear system excited by white noise. Specifi- 
cally, in the present case, we assume that 

m = AmtBu 2 

where A and B are p X p matrices, u2 is a p vector, and 

Eb2(t)l = E[u,(t)u,T(~)l = 0 

Eh2(t)+l = Q,W(t-7) 

E[m(O)] = E[m(t) x:(t)] = 0 

E[m(O) mT(0)] = N(0) 

(153) 

(154) 

(155) 

(156) 

(157) 

The optimal filter is then given by* 

j;,&(t) = x;(tIt)+Ky 

+t) = F&(tlt) -K[Ay+Hk&)] -KY 

(153) 

(159) 

*See Ref. 29 for the derivation. The result given here is a slightly generalized version 
of Example 1 of that paper. 
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K = (PIHT+QIC;)R-l 

$1 = FllP1+P FT +Q 1 11 1 - (PIHT+QICT’R-l(CIQI+HP1) 

and 
H = Cl+C 

1 11-AC1 
F 

R = C,Q,C;+Ba,B 
T 

The initial conditions are 

Pp+) = Epl -PIC;(CIPIC;+N)-lC P } 
1 1 t=o 

(160) 

(161) 

(162) 

(163) 

(164) 

(165) 

The discontinuities at the initial time are due essentially to the fact that an 
initial estimate and an exact measurement are simultaneously available at the start. 

We illustrate the application of these ideas in the following. 

Example 9: Consider the problem stated in Example 3 and solved there by the Wiener 
method. The same problem will be solved here by the techniques presented in this 
section. 

The shaping filters for the message and noise are found to be 

G@)(s) = 1 
1 s+2 

G@)(s) = e?- 
1 s+5 

Consequently, the message can be represented as 

. 
x1 = -2x1+u 1 

with 

E[ul(t)u;(r,] = S(t-7) 

The measurement is 

y = Xl+m 
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where 

&= -5m+5u 
2 

Comparison of these equations withthe set (148 - 155) indicates the following 
equivalence. 

F =-2 
11 

A = -5 

Q1 = 1 B = 5 

Cl =l Q2= 1 

Since we are seeking the steady-state solution (time-invariant filter), K and 
PI are constants, with the latter obtained from Eq. (161) with $1 = 0. 

Substituting known values, we find from Eqs. (160 - 163)) 

R = 26.0 

H =3.0 

PI = 0.2232 

K = 0.0642 

The equations of the optimal filter are then given by (158) and (159); viz. , 

?l(tlt) = xf(tlt)+Ky 

+lt) = -2 sl(tlt) - K[-5y+3Gl(tlt)l 

Eliminating XT between these equations results in 

qtlt) 
-= 0.0642 (s+5) 

Y (s + 2.1926) 

which is identical to the result obtained in Example 3 by the Wiener method. 

3.3.4 Aerospace Applications 

Direct applications of the Wiener theory in aerospace problems have been 
rather limited. For any but the simplest type of systems, the mathematical structure 
becomes too unwieldy. On the other hand, Kalman’s approach has the virtue of ex- 
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hibiting immediately the form of the optimal filter and makes use of either finite or 
infinite data with equal facility. This makes it very attractive for use in systems where 
optimal estimates based on noisy measurements are to be improved as additional in- 
formation becomes available. The computational algorithms are easily adapted for 
computer processing in real time for operational systems. It is required only that the 
system be linear and that initial variance estimates be available. The latter restriction 
is not too serious, since the effect of poor initial estimates diminishes as more and 
more measurements become available. The linearity stipulation is more fundamental; 
usually this is satisfied by treating the estimation error (which may be taken as the 
state variable) as a linear expansion about some reference condition. The prospects 
are therefore very favorable for applying the theory in order to obtain significant im- 
provements in system performance for a wide variety of realistic situations in aero- 
space guidance and control. A sampling of the literature in this area is contained in 
Refs. 30-36. 

In what follows, we will discuss three problems which are fairly typical of 
present applications of the theory. 

3.3.4.1 Optimal Estimation of Position and Velocitv(30) 

The problem to be considered involves the in-flight determination of the po- 
sition and velocity of a space vehicle for purposes of midcourse guidance. It is pre- 
sumed that a reference trajectory is known, but because of various random effects, 
the vehicle will never be precisely on this reference trajectory. Consequently, it is 
proposed to make a series of measurements that will, in fact, give the actual position 
and velocity of the vehicle and that will thereby permit the necessary guidance correc- 
tions to be applied. However, the measurements obtained are contaminated by noise, 
so that again, it is not possible to know the position and velocity precisely. The prob- 
lem reduces to one of making optimum use of the measurements for purposes of guid- 
ance correction. 

In order to apply the Kalman theory, certain conditions must be satisfied. 
First of all, the system must be linear. The equations describing the vehicle motion 
are, however, highly nonlinear. 

Consider the situation depicted in Fig. 14. The motion of the vehicle is derived 
on the basis of including the gravitational effects of the earth, moon, and sun. For a 
vehicle on a lunar mission, this accounts for the predominant effects influencing the 
motion. The sun and moon are assumed spherical and homogeneous, while the gravi- 
tational field of the earth is modified to take account of surface oblateness. 

An inertial geocentric coodinate frame* is adopted where the Z axis lies along 
the earth’s polar axis and is positive to the north; X and Y are in the equatorial plane 

*See Ref. 57. 
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0 SUll 
(Xs, Y,Y Zs) 

Aries 
Figure 14. Geocentric Coordinate System 

with the positive X axis pointed in the direction of the first point of Aries. The Y axis 
is oriented to complete a right-handed orthogonal system. 

The vehicle equations of motion then take the following form(37). 

j; = -!f[l+J (.)+ $1 - pm;;xmJ 

m 

‘mXm P, WXs) PsXs 
--- 

3 
r A3 

- - q f,(X,Y,Z) 3 
r 

m S S 

‘rn ym MS 0-J c(,y, 
- F - A3 -- r3 = f2(X,Y, Z) 

m S S 

(166) 

(167) 
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‘rn’rn Ps (Z - Zs) 
--- 

ps zs 

r3 A3 r3 
- - 5 f,(x,Y,Z) . 

m S S 
(168) 

where 

r = (X2+Y2+z ) 2 l/2 

r 
m = (x;+Y2m+z;)1’2 

r S = (xi+YZ+ zy2 

A 2 l/2 
m = cwxm)2 + (Y-Ym)2 + (Z-Zm) ] 

A S = r(x-xs)” + (y-Ys)2 + (Z -zm)2]1’2 

‘e 16 3 = 1.467683 x 10 ft /sec2 

‘m 1.729774 14 3 = x 10 ft /see2 

% = 4.68023 X 1021 ft3/sec2 

a = 20.9258 x lo6 ft = radius of earth at equator 

J = 1.6246 X 10 -3 

In order to linearize the set of equations (166) - (168), we expand each in a 
Taylor series about the reference trajectory; viz. , 

afl 2 = fl(xR, YR, ZR) +- 
ax e-x,) 

afl 
+ay FYR) 

afl 
+ z (Z - ZR) + higher-order terms 

with similar equations for y and i’ . 
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If we now define a vector, x, whose components are 

x1 
= x- 

Eic 

x2 = Y-YR 

x3 
= z-z 

R 

x4 
=k 

x5 = kYR =j, 2 

x6 
= i-i =j, 

R 3 

then, in view of the preceding results, we have 

ir = A(t) x 

0 l I . 
A(t) = . . . .‘C.. . . 

Al(t) : 0 

where 
afI af 1 
ax aY 

Al(t) = 
af2 af2 

ax ay 

af, af3 

2% ay 

I q 3 X 3 unit matrix 

0 = 3 X 3 null matrix 

All the partial derivatives are evaluated along the reference trajectory. 

Since measurements are to be made at discrete intervals, it is convenient to 
express Eq. (170) in the form 

(170) 

af 
1 

az 

af2 
az 

af3 
az ! 

x(t+ At) = Q (t+ At, t) x(t) (171) 
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where Q(t + At, t) is the transition matrix (18) for the system (170). It is assumed that 

E[x(tO)l = 0 

and that the covariance matrix 

P 
0 = Eh(tO) XT@,) 1 

is given, where to is the time at the start of the estimation scheme. In other words, 
at the start of the process, it is “expected” that the deviation vector, x, is zero (i.e. , 
the vehicle is on the reference trajectory) and our confidence in this assertion is ex- 
pressed quantitatively by the initial value of the covariance matrix, PO. As noted 
earlier, the estimation scheme is not too sensitive to PO in the long run. A large PO 
merely means that more measurements must be taken to ensure that P(t) ultimately is 
reduced to below a preselected level. Some care must be taken, however, that PO not 
be too large, since, in some instances, the numerical processing may produce a neg- 
ative definite P(t) which will invalidate the computation. The question of uncertainty in 
the a priori estimates of covariance has been clarified in recent papers by Soong(38) 
and Nishimura(3g). 

It noti remains to consider the instrumentation to be employed and the means 
of incorporating this in the estimation scheme. For present purposes, it will be as- 
sumed that one can measure the angles, a, /3, and y, as shown in Fig. 15. From the 
geometry depicted here, one can readily derive the equations which relate these angles 
to the vehicle position; viz. , 

-1 z o=sin r 

/3 = sin -1 Y 

(x2 + Y2) 

-1 r. y = sin 7 

The instrumentation output is of the form 

(173) 

(174) 

Q =a +v m act 1 

Is, = ‘act + v2 

‘rn = ‘act + v3 
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where the subscript “act” denotes actual value, and the vi represents noise. It will be 
assumed that the noise has zero mean and is uncorrelated between successive meas- 
uring instants (i. e. , white). 

Earth 

Figure 15. Measurement Scheme 

72 



I 

We now define 
. 

ACr = a -o! 
m m nom 

AS m = ‘m - S,om 

AY 
m = ‘rn “nom 

i 

where the subscript “nom” means nominal value -- a lmown quantity if the reference 
trajectory is known. 

If we now let 

Aa! = aact-o! nom 

and similarly for A/? and Ay, we may write 

AC2 m = ACY+V~ (175) 

A6 m = Afi+v2 (176) 

AY m = Ay+v3 (177) 

The quantities ha, A& and Ay represent deviations from a nominal or refer- 
ence value, and if these are assumed small, then a Taylor series expansion about this 
nominal results in 

ACY 

AS 

AY 
i 

a~ a~ ay 
ax ST az 

x1 

x2 

x3 

By combining this with the previous results, we may write 

z(t) = M(t)x+v(t) (178) 

where v(t) is the noise vector whose components are vl, v2, v3; x is the state vector 
defined by Eq. (169); and 
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z(t) - 

M(t) = [ Ml(t)~ O] 
where 

Ml(t) = 

aa af2 acd 
ax ay az 

a6 a6 v 
ax ay az 

a~ ay w 
ax ay az 

and 0 is a 3 X 3 null matrix. 

The estimation scheme is now in the form of Eqs. (104) and (105), where, in 
the present case, w(t) 3 0. Consequently, the optimal estimates are given by Eqs. 
(131) - (133) as follows. 

$(t+AtIt) = @(t+At, t) g&-At) + K(t) [z(t)--(t) i;(tlt-At)7 (179) 

K(t) = @(t+At, t) P(tjt-At)MT(t) [M(t)P(tIt-At)MT(t)+R(t)]-l (lb(J) 

P(t+Atlt) = @(t+At, t) IP(tlt-At)-P(tlt-At)MT(t) [M(t)P(tjt-At)MT(t) 

+ R(t)]-‘M(t) P&It- At)} QT(t+At, t) (181) 

Recall that x(t) is a vector representing deviations from the reference trajec- 
tory. Therefore 2(t + At 1 t) is an optimal estimate of deviations from nominal. This, 
in turn, permits one to estimate the actual trajectory. 

Regarding the actual implementation of this procedure in an on-board digital 
computer, the following points may be noted. First of all, as far as calculating the 
actual trajectory, the set of equations (166) - (168) could be used, given initial values 
of position and velocity rather than the linearized version (171). 
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In other words, the estimated values of position and velocity can be used to 
calculate future position and velocity based on the precise equations of motion, rather 
than linearized versions, which are inherently less accurate, being used. 

However, the computations involving P and K still require the linearized 
approach because of the manner in which Eqs. (132) and (133) were derived. The 
matrix, R, which represents the covariance matrix of the noise vector, v(t), is con- 
stant and can be initially stored in the computer. Theoretically, one can also store 
@(t + At, t) and M(t), since these are known for all values of t, given the reference tra- 
jectory. However, this may lead to computer storage capacity problems, and also to 
less flexibility in choosing measurement times and intervals. There is the additional 
disadvantage that the linearizations are about a reference trajectory that is now less 
accurate than the new estimated trajectory. Consequently, it appears preferable to 
linearize about the estimated rather than a reference trajectory, from the point of view 
of minimizing error buildup. This is clearly the correct procedure, since P has to do 
with the difference between the estimate and the true state; the estimate is, on the 
average, closer to the true state than is the reference. Since cS(t + At, t) and M(t) are 
to be recomputed between successive measurements, it is of course necessary that the 
computation time on the computer be less than the time interval, At, between succes- 
sive observations. 

et al(30) 
Some results of a digital computer study of this problem are given by Smith 

. 

3.3.4.2 Optimum Stellar Inertial Navigation System (34) 

A general discussion of the dynamic properties of an inertial navigation sys- 
tem is presented in Chap. 4 of Ref. 40. As discussed there, the system dynamics 
depend upon the mode and duration of operation. The problem to be analyzed in this 
section is concerned with an inertial system operating in conjunction with a star tracker 
(stellar-inertial mode) and represents a specialized case of the more general dynamics. 

The basic problem derives from the fact that over a period of time, the drift 
rates of the gyros in the inertial platform introduce significant error in the navigation 
system. There are various ways of alleviating this problem*. The approach to be 
considered here makes use of the Kalman theory with the result that significant im- 
provement over previous methods can be demonstrated(34). 

To begin the discussion, we define three coordinate systems in the nomen- 
clature of Ref. 40. 

cp is the vector angle relating the platform coordinate system to a true coordi- 
nate system (attitude error). 

*Cf. Ref. 40, p. 146. 
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60 is the vector angle relating the computer coordinate system to a true co- 
ordinate system (position error). 

WI* $I is the vector angle relating the platform coordinate system to the computer 
coordinate system. 

The vector angles are related by 

cp=@+68 (182) 

We shall be especially concerned with the vector angle, $, that can be 
s hownf4’) to satisfy the equation 

$=c 033) 

in the stellar-inertial mode of operation. Here, c represents the gyro drift rate vector 
whose effects on the system must somehow be compensated for. The information avail- 
able on c is generally of a statistical nature, and the problem is one of making an opti- 
mal estimate of $ based on some reasonable stochastic description of 6. 

In what follows, we shall assume that c is composed of two parts, 

the first of which is an unknown constant vector (gyro bias) and the second a zero mean 
random vector whose power spectral density is known. Specifically, we assume that 
each component cri of cr, corresponding to each of the three platform gyros, has a 
power spectral density given by 

Gi(w) = 43. 
l l 

The corresponding autocorrelation function is 

IT (7) = 0” empi17 I i i 

It is assumed that the gyros are uncorrelated; i.e., 

E [c(t) crjtT) 1 = 0 

(195) 

WY 

Now according to the definition of a shaping filter*, if white noise having a 
power spectral density given by 

G(i)(w) = 2 cr2 fi 
W i i 037) 

*See Eq. 91. 
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is passed through the linear (shaping) filter having the transfer function 

1 
s+B 

then the output power spectral density is equal to that of Eq. (185). Accordingly, we 
may represent the statistical properties of cri by the dynamic system 

i 
ri = - yri+w. 

1 
Wf3) 

where 

Ek(t)w+r)l = 2+$6(t-7) (189) 

This may be written in matrix form as 

; r 
= HE~+w 

The equation for the unknown bias constant is 

; =o 
C 

Combining Eqs. (183)) (184), (190)) and (191)) we have 

;r = Ax+Bw 

where 

x= 

A= 

B= 

9 
. . . . 

II 

cc r 
. . . . 

c 
C 

[ 

0 : . 
. . . l . 

0 : 
. 

. . L +. 

0 : 

0 

, . . . 

il 

I 
. . . . 

0 

I : I . . . m,. . . . 
H : 0 
. . .-. . . . 
0 : 0 

t1w 

(191) 

(192) 
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--- 

Notice that Eq. (192) is expressed in terms of partitioned matrices -- not 
scalars. 

We seek to estimate the state vector, x, making optimal use of appropriate 
measurements. The present situation is distinguished from that of Sec. 3.3.4.1 in 
that both correlated noise (the cr. vector) and an unknown constant (the bias vector, cc) 
have been incorporated in an augmented state vector. In other words, these additional 
complications may be treated in straightforward fashion at the cost of dealing with a 
higher-order system. Since there is no associated difficulty of a theoretical nature, 
the limitations are primarily computer time and storage requirements. 

We now turn to a consideration of the measurement procedure. A star tracker 
that is physically mounted on the stable platform can be driven in both azimuth and ele- 
vation. Tracking is accomplished by selecting a star from the catalog stored in the 
system computer. The computer then automatically computes the telescope pointing 
angles; i.e. , the azimuth angle, CI!, and the elevation angle, y, through which the tele- 
scope must turn to point at the selected star. Neglecting errors in the telescope drives, 
it would be possible to point the telescope directly at the star if the computer coordinate 
system and the platform coordinate system were coincident. The platform system, 
however, is rotated from the computer system by the vector angle, I/J. That is to say, 
the vector angle, $J, is the telescope pointing error, or the error in pointing a platform- 
mounted telescope at a star. 

We therefore seek to determine the relationship between the errors in the 
pointing angles, CI and y, and the vector angle $L 

The position vector of the telescope relative to the platform coordinate system 
is given by (see Fig. 16) 

cos y cos a 

sp = 

[ 1 

cos y sin o 

sin y 

This vector has components in the computer coordinate system as follows 

sC 
= AS, 

A= 

1 +z -$ 

-Gz 1 
$X 

dJy -f 1 
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Figure 16. Orientation of Telescope in Computer Coordinate System 

or* 

This may be written as 

sc = sp + ASP 

where 

I 
dJ, SQCY - #Jy”Y 

ASP = - GzCcrCY + +xsY 

ey CQCY - tix”QCY 

(193) 

*We have used the abbreviations, s& CU, for Sin o!, COS a, etc. 
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The increment in Sp due to increments ha! and Ay is 

which reduces to 

By equating the expressions (193) and (194) we obtain the relations between 
the Q vector and 

Aa = 

Ay = 

the errors in pointing angles ; viz. , 

$,coscr tany + qysino tany - $, 
ZI 

- Qxsino+ $ CoSQ! 
Y 

We now define the measurement vector as 

where 

+v 

1 

(195) 

tan y cos Q! tany sincll -1 
M = 

S - since cos a 0 
1 

and v is a two-dimensional white-noise vector. In order to be compatible with Eq. 
(192), we write Eq. (195) as 

. . 

Z = M : 0 : 0 x+v s- . . . 1 
where 0 is a 2 X 3 null matrix. 

(196) 

We will consider the discrete version of Eq. (192), which may be written as 

x(t+l) = Q(t+l, t) x(t) + r (t+l, t) w(t) (197) 
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where Q(t+l, t) is the transition matrix for the system, and 

t+1 

r (t+l, t) = 
J 

U’(t+l, T) Bdr 
t 

Eqs. (197) and (196) are in the form of (104) and (105), so that the optimal 
estimation equations are given by (131) - (133). The optimal estimates thus obtained 
are used to correct the system in some appropriate fashion. In the paper by Bona and 
Hutchinson(34) this information is used to “reset” the inertial system to compensate 
for gyro drift rates. Typical results obtained are shown in Figs. 17 and 18. The upper 
curve in each figure indicates the accuracy obtainable by conventional methods*. The 
runs were made with the system operated as described above, employing optimal esti- 
mation followed by corrections for a period of six hours, after which a conventional 
correction procedure was used. The improvement in accuracy achieved by employing 
optimal estimation procedures is quite dramatic. 

2 4 6 8 10 12 14 16 3 

Figure 17. Longitude Error Comparison 

Time (hours) 

*i. e . , the so called “damped inertial mode. ” Cf. Ref. 40 - p. 146. 
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Figure 18. Latitude Error Comparison 

3.3.4.3 Optimal Estimation of Local Vertical and Orbital Parameters (41) 

In this section, we discuss the application of the Kalman theory to the problem 
of determining the direction of the normal to the earth’s surface from aboard an earth 
satellite making use of horizon sensor measurements that are contaminated by noise. 
In addition to providing an optimal estimate of the local vertical, the estimation scheme 
corrects for errors in the assumed values of the elliptical orbit parameters that deter- 
mine the motion in the orbital plane. 

Much of the simplicity of the scheme results from the assumption that all 
measurements are taken in the orbital plane and that the vehicle rotation is about an 
axis normal to the plane. After injection into orbit, the vehicle attitude control system 
removes rotations about all vehicle axes except one. The attitude control system is 
also used to align this axis with the normal to the orbital plane. A good estimate of the 
orbital parameters (which are constant if orbital perturbations are neglected) is avail- 
able. The estimation scheme will refine these values as measurements are processed. 

If a vehicle fixed reference direction is chosen in the plane of rotation, each 
horizon sensor measurement may be interpreted as an angle between local vertical 
and this reference direction. The simplest situation to consider is when the reference 
is in the direction of local vertical at perigee and the satellite is rotating at the mean 
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motion of the orbit, (w = Us = +, where T is the period). At any time, t, after perigee 

passage, the angle, a, between local vertical and reference is simply the difference 
between the true anomaly, cp, and the mean anomaly, y , of the elliptic orbit. (See 
Fig. 19.) 

a(t) = cp (0 - Y(t) = c(t) (198) 

More generally, for any constant rate of rotation and an arbitrary injection 
point, (t=O) , o(t) is given by 

o!(t) = /9 + r(t) - P(0) - &J-F t [ 1 (199) 

The quantity, 8, is simply a bias angle depending on the arbitrary choice of 
the reference direction. Following injection, o!(t) depends upon the behavior of p(t) as 
compared to p(O), and the difference between the actual rotational rate and the mean 
motion of the orbit. 

For orbits 
e and y(t). 

of small eccentricity, e, c(t) may be expressed (42) as a series in 

OC = local vertical 

OR = reference direction 

Figure 19. Satellite and Orbital Parameters 
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c(t) = 
( 
2e-$e3 +& e5+$& e7 

> 
sin y(t) . 

47273 7 + . . . . . . . . . . +G e sin7y(t) 

Also, 

Y(t) = $ (T+t) (201) 

(2W 

where T is the (virtual) time from perigee passage to the injection point, and 

7 = C a3’2 (202) 

which is simply Kepler’s third law. Here, “a” is the semimajor axis of the ellipse, 
and C is a known constant. 

Consequently, cw(t) may be expressed as a function of five independent param- 
eters and time, t; viz. , 

a(t) = f (e, a, T, 0, 8, t) (203) 

The orbital parameters are e, a, and T, while o and B relate to the orienta- 
tion of the vehicle. 

The measured angle, em, determined from a noisy horizon sensor meas- 
urement of the local vertical at time, ti, is 

am(ti) = a! (ti) + v(t$ (204) 

where V(ti) is random white Gaussian noise whose statistical properties are given by 

E[v(ti)] = 0 (205) 

E [v2(ti) ] = o2 (206) 

E[v($) v’tj’ 1 = 0 i#j (207) 

If a nominal or calculated value of cw(ti) is denoted by onom(ti), then 

Aam = crm (ti) - “,om(ti) (208) 

In calculating crnom(ti) , the best current estimates of e, a, T, o , and fi are 
used. At time t=O, an initial estimate of these quantities is available. 
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From Eqs. (204) and (208)) 

Aam = Aa! (ti’ +v(ti) (209) 

where 

ACY ‘ti’ = o! cy - ‘Ynom(ti) 

If the error parameters 

Ae i = e-e i 
Aa. = a-a. 

AT; = T-G i 
AU i = o-wi 

ALI 
1 

= s-si 

(210) 

(211) 

are small, then Ao (ti) may be approximated by* 

(212) 

which is obtained via a Taylor series expansion of (203) and dropping higher-order 
terms. In (211)) ei denotes the updated nominal value of e calculated after measure- 
ment at time ti, and similarly for ai, Ti, etc. 

From (209) and (212), 

Z i 
= Mixi + v. 

1 

where 

Z i q z(ti) = Aam 

V. 
1 

q v(k) 

ami) 

Mi = 
. . . . . . . . . . . 1 x 

(2 13) 

*The partial derivatives are evaluated using nominal parameter values. 
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alX5matrix 

x. = 
1 

v- 
Ae i 

Aa 
i 

AT i 

AU i 

Eq. (213) is in the form of (105). In the companion equation (104)) w(t) z 0 in 
the present case, while Q(t+l, t) is the unit matrix, since the state vector, xi, is con- 
stant. Consequently, the associated estimation scheme, (131) - (133)) reduces to 

ii i+l 
= iti+ Ki Czi -M&l 

Ki = PiM;[MiPiM;+Ri? 

P = i+l Pi-PiM;[MiPiM;+Ri?M P i i 

(2 14) 

(215) 

(216) 

where we have used the abbreviated notation. Here 

Ri = a2 

and we are given 

pO = E[xoxI] 

and 

E[xO] = 0 

The computational procedure is as follows. At t=O , we are given a set of 
nominal values for the parameters e, a, T, o , and 0. Using Eq. (203)) we calculate 
crnom(0). Furthermore, we have ji, = 0, and the given value of PO. This permits us 
to calculate P1 and 2, from Eqs. (214) - (216)) which in turn yields a revised set of 
values for e, a, T, w, and p. With these, we calculate crnom(tl), an improved esti- 
mate of (y(t) . The estimation scheme then proceeds recursively, obtaining more re- 
fined values of a(t) and the parameters e, a, T, o, and 8. 

A more complete discussion of the problem and the results of some computer 
studies are contained in the paper by Knoll and Edelstein(41). 
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3.3.5 Use of Quasilinearization 

In applying the Kalman estimation procedure, it is essential that the system 
under consideration be linear. When this is not the case, a linearizing procedure may 
be employed by the usual perturbation methods. Thus by considering only small devi- 
ations from a nominal trajectory, a linear system is obtained. This procedure was 
illustrated in the previous examples. 

A somewhat less restrictive procedure is that of quasilinearization(43’44), 
which essentially replaces a nonlinear system by a sequence of linear equations, whose 
solution approaches that of the original nonlinear system. The main advantage of quasi- 
linearization over perturbation methods is that a nominal or reference trajectory need 
not be specified a priori. 

3.3.5.1 The Quasilinearization Method 

Consider the vector differential equation 

2 = f(x, 7) 

where x is an n dimensional state vector. The boundary conditions are 

xj(Ti) = a.m 9 

(2 17) 

(2 18) 

i=l, 2 ,...... ,n 

where the ‘j are, in general, not all equal; i.e., we are considering a multipoint 
boundary value problem. 

Let x(‘)(r) be an initial approximation to the solution of (217). The initial 
approximation may be any function’that satisfies (218). Then the (k+l)th approximation 
is determined from the. kth approximation by the linear differential equation 

p-tl) (7) = F’)(r) x~+‘)(,) + u’)(r) 

where F(k) (7) is an n x n matrix whose ij th component is 

and 

af. (dk), 7) 
F(k)(7) = ’ ij ax. 

3 
i, j=l, 2 ,. . . . . ,n 

(220) 

U')(T) = f(x’), 7) - F')(T)x(~)(T) (221) 

(219) 
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The maximum value of k should satisfy some error criterion, for example 

where F is a predetermined error vector. 

If x(k+l) (7) is sufficiently close to x Or)(T), then the differential equation (219) 
is a sufficiently close approximation to the nonlinear equation (217). 

Kalaba(43) showed that the sequence of functions, x (O’(T), X(l) (7) , . . . . . . . . , 

x@+‘)(T), converges quadratically to X(T), the solution of (217), if f(x, T) is a strictly 
convex function, and the off-diagonal terms of the Jacobian of f(x, 7) are all positive. 

The general solution of Eq. (219) is 

x(k+l) (7) = H(k+l)(~) c~+‘) + P’+‘)(T) 

where 
i(k+l) (7) = F(k)(T) H(k+l)(T) 

H(k+l) (To) = I the unit matrix 

p+v 
(7) = F"(T) p’+l)(~) + u@+~)(TJ 

p’+l)(T ) 
0 

= 0 

(223) 

(224) 

(225) 

co’+l) E initial condition vector 

The n components of c or+u are found by writing the expression for the jth 
component of x@+l)(T); viz. , 

Using the n boundary values given by (218)) this may be written as 

n 

a.. = 
9 

+ P@+~)(T) 
j 

(226) 
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An application of this method to the solution of a simple nonlinear boundary 
value problem is contained in Appendix C. 

The main disadvantage in the use of quasilmearization, aside from the fact 
that it is more complicated then perturbation methods, is the requirement that f(x, T) 
be strictly convex and that the off-diagonal terms of the Jacobian of f(x, T) be positive. 
However, these conditions are sufficient; they may not be necessary. 
Stubberud(45) 

Ohap and 
analyze a specific problem in orbit estimation where the quasilineari- 

zation method converges even though f(x, 7) do not satisfy the aforementioned conditions. 

A detailed procedure for combining JSalman filtering and quasilinearization as 
a general estimation technique is outlined in the following section. 

3.3.5.2 Combination with Kalman Filtering 

The nonlinear system to be considered is given by Eq. (217)) and its quasi- 
linear equivalent is described by Eq. (219). We will first transform the latter into a 
linear difference equation as follows. For simplicity, we will drop the superscripts 
in the ensuing discussion. Letting T =t and t+l in Eq. (223)) we have 

x(t) = H(t) c+p(t) 
(227) 

x(t+l) = H(t+l) c + p(t+l) 

Eliminating c from these equations yields 

x(t+l) = @(t+l, t) x(t) + w(t) (228) 

where 

@(t+l, t) = H(t+l) H-‘(t) (229) 

w(t) = p(t+l) - @(t+l, t) p(t) (230) 

Eq. (228) is identical to Eq. (104) except that l?(t+l, t) = I and w(t) is a non- 
random vector in the present case. Consequently, 

and* 

E[w(t) 1 = w(t) 

Q(t) = 0 

In this special case, the optimal estimation equations (131) - (133) become 

*See Eq. (101). 

89 

II 



%(t+llt) = @(t+l, t) Ei(tjt-1) + K(t) [z(t)-M(t)f(tlt-1)] + w(t) 

K(t) = @(t+l, t) P(tj t-l) MT(t) [M(t) P(tjt-1) MT(t) +R(t)]-’ 

(231) 

(232) 

P(t+llt) = @(t+l, t) {P(tlt-1) -P(tlt-l)MT(t) [M(t) P(tlt-l)MT(t) 

f R(t) 1-l M(t) P(t 1 t-l) } QT(t+l, t) (233) 

The general procedure requires that a sufficient number of measurements be 
taken such that the n boundary values necessary for the iterative solution of (219) can 
be determined. The measurements are of the form analogous to Eq. (105) ; viz. , 

z(t) = M(t) x(t) +v(t) (234) 

where z(t) is an m vector. 

In order to start the process, we take h measurements, z(O), z(l), . . . . . . . , 
z&1-1), where h is the first positive integer that is greater than the ratio n/m. This 
then yields hm (m) scalar equations *, the first n of which are a set of simultaneous 
algebraic equations used to determine the initial vector c. The random vector v(t) in 
(234) is assumed zero for the moment. In other words, the initial vector, c, is only. 
approximate, since the noise effect has been discarded. Specifically, we have 

z(0) = M(0) x(0) 

z(1) = M(1) x(1) 
. 

. 
z@-1) = M(h-1) x(h-1) 

Replacing x(t) by (223)) 

z(O) = M(0) H(0) c + M(0) p(0) 

z(1) = M(1) H(1) c+M(l) p(1) 
. 
. 
. 
. 

z&l) = M(h-1) H(h-1) c+M@-1) p(1) 

*The (hm-n) excess equations are merely discarded, since they are redundant for 
present purposes. 
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These equations are solved for c. We now determine the (2h-1) optimal esti- 
mates g(ljO), a(2Il), . . . . . . . . ji(2h-112h-2)) and the corresponding covariance matrices, 
P(llO), P(211), . . . . . . . P(2h-1 I2h-2) from Eqs. (231) - (233)) where P(0) is assumed 
given and the initial value of the state vector is taken as 

s(o) = x(~+‘)(O) = Hoc+l+O) c+ p@+l)(o) (235) 

We have included the superscripts to emphasize that the final iterated value 
of the quasilinearization is used; i.e., when the condition (222) has been satisfied. 
The quantities @(t+l, t) and w(t) in Eqs. (231) - (233) are calculated from Eqs. (229) and 
(230). 

The procedure then continues as follows: 

1. Compute the optimal estimates of the next set of observations, s(h 1 h-l), 6 (h+l 1 h) , 
. . . . . . . , 2(2h-1 I2h-2), where 

z(t+llt) = M(t+l)g(t+llt) (236) 

2. Make the next set of (h-l) measurements, z(h), z (h+l) , . . . . . . , z(2h-2). 

3. Determine the prediction errors, F(h 1 h-l), z(h+lI h), . . . . . . . , ;(2h-2 I2h-3)) where 

Y(t+il t) = z(t+i) - S(t+ilt) (23’3 

4. Compute the (h-l) weighted observed quantities z*(h), z*(h+l), . . . . . , z*(2h-2), 
where 

z*(t) = z(t) + &I t-l) (236) 

The quantity his an m X m weighting matrix to be discussed subsequently. 
These (h-l) values of z* together with 201-l lh-2) are used to determine a new in- 
itial condition vector, c, for the quasilinearization of Eq. (217) over the interval 
(h-l) 5 T 6 (3h-3). 

5. Compute the (2h-1) optimal estimates ji(2hl2h-l), 2(2h+l I2h), . . . . . . . . . , 
2(3h-2 I3h-3)) and the corresponding covariance matrices, P(2h I2h-1)) P(2h+-11211)) 
. . . . . . . . . . P(3h-2 I3h-3) using the new initial condition vector and the previously 
determined optimal estimates, ji(2h-112h) and P(2h-1 I2h). 

6. Continue the process by returning to step 1 and incrementing all of the arguments 
by 01-l). 

The presence of the weighting matrix in Eq. (238) is necessary in order to en- 
sure some degree of stability in the computations. For example, if A = 0, then the new 
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information provided by the optimal estimates is not fed back to help improve the accu- 
racy of the computed transition matrices. If the transition matrices are computed 
using only estimates of the observations, (i.e. , with A = - I) then the computations may 
diverge with time, since the estimate B(t+l I t) is really composed of two quantities; one 
is the true optimal estimate of M(t+l) x(t+l), and the other is an error due to the fact 
that the computed transition matrix is not the true transition matrix. Hence the com- 
putational errors would be cumulative. It is sufficient to take A= -+I to ensure com- 
putational stability. 

The paper by Ohap and Stubberud(45) gives some numerical results for an or- 
bit estimation problem. 

3.4 STOCHASTIC EFFECTS IN SYSTEM DESIGN 

The discussion of the Wiener and Kalman methods contained in Sections 3.2 
and 3.3 does not exhaust the stochastic techniques available for control system appli- 
cation. Of the many design tools that have evolved in recent years for the rational de- 
sign of control systems subject to stochastic effects, we have chosen two examples that 
are especially useful in aerospace applications. These are discussed in the following 
sections. 

3.4.1 Minimization of Error 

Whereas the Wiener method is normally concerned with the design of a physi- 
cally realizable filter to minimize a mean-square-error criterion, one often has afixed 
transfer function where only a few parameters may be varied to achieve this minimi- 
zation. In one of the earliest practical applications of the Wiener approach, Phillips(47) 
considered a radar tracking device where certain “equalizer” parameters could bevar- 
ied to achieve a minimum mean-square error. In order to describe the general 
approach, wherein the basic ideas are not drowned in a tidal wave of mathematics, we 
will consider a highly simplified version. 

A message consisting of a signal, x(t), and additive noise, n(t), is applied at 
the input of a device having a transfer function, L(s). If the output signal is denoted by, 
y(t), then we have, in Laplace transform notation, 

Y(s) = L(s) t-X(s) +N(s) 1 (239) 

If we define the error by 

e(t) = y(t) - x(t) 

or, equivalently, 
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E(s) = Y(s) - X(s) (240) 

then it follows that 

E(s) = [L(s) - l] X(s) + L(s) N(s) (241) 

We are given the power spectral densities for the signal and noise as follows. 

(242) 

where k, cr, and B are positive constants. 

The transfer function, L(s) is of the form 

Us) = & (244 

It is required to determine the value of T such that the mean-square error is 
minimized. 

Using Eqs. (52), (53), and (60), we find that 

. . . 
m 

-5 
E[e2(t)] = e = ree(0) = -& J Gee (0) da 

-co 

Also, via Eqs. (63) and (241)) 

Gee(o) = IL(iw)-112Gm(w)+ IL(iW)12Gn(&) 

Combining the last two equations, we have 

m co 

” = & / IL(iw)-1j2 (w)dw +& / (L(iw)j2 
-03 -02 

Taking the first integral on the right-hand side of this equation, we have 

(245) 

(246) 

(247) 

03 a 

$y / 1 L(io) -11 2 G=(w) dw = & / [L(iw) -l][L(-iw) -11 G=(o) do 
-03 -co 
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= & j[- l%T] [ET] g”wz, do 
1 

/ 
2i02fiT2 w2dw =- 

2ni ,co (i+ioT)@+iio)(l-ioT)@-iO) 

This may be evaluated by the method given in Appendix D. The final result is 

co 
& IWo) -112 s -03 (aldo = i$$ 
Similarly, the second integral in Eq. (247) is found to be 

03 

& IL(iw)12 
/ -m 

Therefore, 

?i u2/3T k2 
e =1+BT+2T (243) 

In order that this expression be a minimum, we must have 

k 
T= 

Al- 
(249) 

u 2/3-w 

When more complex transfer functions are considered, it is often found that 
the value of a parameter that minimizes the mean-square error results in a system 
with unsatisfactory performance from a conventional point of view. This is generally 
in the form of a highly oscillatory response, since the mean-square-error criterion 
places a heavy weight on large errors. Consequently, results obtained by this analysis 
must be interpreted with due regard for other factors. 

3.4.2 Wind Loads on a Launch Vehicle 

The short-period dynamics of an autopilot-controlled launch vehicle in the 
pitch plane may be described by* 

*These equations are derived in the monograph, “Short Period Dynamics, ‘I which con- 
stitutes part 1 of Vol. I in the present series. 
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mU(dr- 6) = Tc6 - La(or+aJ (250) 

Iii = Tc Acti + L&a+ “w) (251) 

6 = -KA(6+kK6) (252) 

W 
W Q =-- 

W U (253) 

The vehicle geometry is shown in Fig. 20; the symbols have the following 
meaning. 

I = vehicle moment of inertia 

KA = servoamplifier gain 

KR = rate gyro gain 

Aa = aerodynamic moment arm 

a = control thrust moment arm 
C 

Lcr = aerodynamic load coefficient 

m = vehicle mass 

Tc = control thrust 

U = forward velocity of vehicle 

Ww= wind velocity 

CY = angle of attack 

cl! 
W 

= defined by Eq. (253) 

6 = control thrust deflection angle 

8 = pitch angle 

For simplicity, all higher-order effects, such as bending, sloshing, engine 
inertia, and instrumentation dynamics, have been neglected. This is valid if one is 
interested mainly in crude approximations of vehicle response to wind loads. More 
specifically, we shall be concerned with the bending moments induced in the vehicle 
due to wind loads. 

The bending moment at some station, j , (see Fig. 20) is given by 

Mj = mi Ai U (G - 6) 
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Station 

TC 

-- 
xB 

zB \ 

Figure 20. Vehicle Geometry 

.th where Ai is the distance from the 1 mass to station j, and the summation is taken over 
all discrete masses forward of station j. 

By combining Eqs. (250) - (254)) we obtain the transfer function relating the 
output Mj (t) to wind input W,(t) as follows. 

1: [Mj(t) 1 = G(s) 1: [ww(t) ] (255) 

where 
(s5+a4s4+a3s3+a2s2+aIs+ao) 

(s5 + b4s4 + b3s3 + b2s2 + bls + bo) 
(256) 

and the a’s and b’s are known constants. 

If the power spectral density of the wind is given, one may calculate the power 
spectral density of the bending moment response via Eq. (63). Such calculations have 
been made by Press and Houbolt(4g) for aircraft. However, the implied assumption 
(other than system linearity) is that the wind statistics may be represented by a station- 
ary time series. For a vertically rising launch vehicle, it is known that the wind statis- 
tics are decidedly nonstationary. Consequently, a somewhat expanded effort is required 
in order to obtain meaningful results. 
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To begin with, the basic quantity influencing the bending moment response is 
Ww(t). In the present case this is assumed to be a random variable. Normally, Ww 
is taken to be a function of altitude (the wind profile). However, for a launch vehicle, 
the mission profile is known; we can therefore relate altitude to time (based on some 
initially prescribed time reference). 

We now assume that the wind velocity satisfies a Gaussian probability density 
function; viz. , 

f(X1’X2’ . . . ..JJ = [(2n)ndetA(WwJr1’2 exp { -~CG-~~(W~)I~A-~CN~) 

where 

AWJ = E i[~w-~cw,,l[%w-~~~]T} 

rcW,, = 
P2 o;vw) . . 

. . 

. . 

Pn(ww) 

Pi’ww’ = EIWw(ti)l 

and the ijth component of A(ww) is given by 

Gw = 

ww (t,’ 

ww &,’ 
. . . . . . 

Ww<t,) 

(257) 

(258) 

(259’ 

(260) 



This assumption is less restrictive than that of stationary wind statistics. It 
is, in fact, supported by certain empirical evidence. If the wind statistics are 
Gaussian, then so is the bending moment response. Consequently, one need only com- 
pute the mean and covariance in order to define the probability distribution of the bending 
moment response. 

In order to compute the means, pi(Ww) , and. variances, Uij (Ww), assume that 
N samples* of the wind profile are taken. As noted earlier, the wind profile is usually 
expressed as wind velocity vs altitude. However, with each value of altitude we will 
associate a corresponding value of time that is related to the specific mission profile. 

We then calculate 

N 

and 

PiWw) = + c w(P’(t ) 
p=l w i 

N 

uij ‘VJ,’ = -$ c 
p=l 

[w$ty -‘LioNw) lPJ;““j’ -pj ‘ww’ 1 

(261) 

(262) 

where Wz)(ti) d enotes th a measurement of the p sample. 

Strictly speaking, this procedure is not correct, since the true means and 
variances are given by 

03 02 

cLiWw’ = I J 
. . . . . x1 f(x p2, ..---, xnF dx 1 2”“’ %I ,m 

and 

Uij’ww’ = I.....[ 
-CD -co 

rxi-yww)l cxj-~jww)l f(X1’ X2’ 

. . . . . . xn’ dx 1 . . . . . d”, 

(263) 

(264) 

However, for large values of N, the sample means and variances calculated 
from Eqs. (261) and (262) will be a close approximation to the true values. 

*N should be a fairly large number, perhaps a few hundred, for the results to be mean- 
ingful . 
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From Eq. (255). we find 

t 

‘r(MJ) 5 E[Mj(tr)] = J 

r 
go, - 7’ c(~W’,’ dT (265) 

0 

where 

P(t) = i?G(s)] 

Eq. (265) gives the mean value of the bending moment at station j at time, tr. 

The bending moment variance is calculated from 

ursWj’ = E f [MJt$’ -urWj)l [MJ(tJ -P~(M~‘I~ (266) 

In order to obtain this result in terms of wind variance, we proceed as follows. 

tr 
Mj@,’ -PrWj’ = J 0 

is@, -7) Ww(~) dT 

tr 

-J 0 
g(t, - 7’ pT Ww’ dT 

tr 
= 

J 0 
go, - 7’ cWw(T’ - pT(ww’ 1 dT 

Similarly, 

t 
-S Mj(ts’ -cc,@,’ = J 0 
g(t, - C’ [ww K’ - q Ww’ I dC 

Therefore 

cMJ(t,) -i$Wj’ 1 [Mj(ts’ -ps(Mj’ 1 

tr 5 

= J gtt 0 r - 7’ [w, (7’ - pTWw’ 1 dT J 0 
gtt, - Cl [WwK’ - uc(ww’ I dC 

99 



tr ts 
= 

l-s 0 0 
gtt, - 7) get, - 0 [ww(7) - PT(ww) 1 [ww(n 

- /~~cw,)l dTdc 

Taking the expectation of both sides of this equation results in 

tr ‘s 
urs(Mj) = s/ 0 0 

g(t, - 7) dt, - cl OTC Ww’ dT dC- (267) 

Thus the mean and variance of the bending moment response is given in terms 
of the mean and variance of the wind by Eqs. (265) and (267). Furthermore, since the 
wind statistics are Gaussian, so is the bending moment response; viz., 

fly19 Y2’ 
-l/2 

. . . . . . yn) = [: @On det A ‘Mj) 1 ew i -+ &iWj’ IT 

where 

. A-‘lWj) [i-;Cmj)l} 

A(Mj) = E t6ij -i( [Gj -iWj)lT1 

Mj (t,’ 
. . . . . . . . 

M j ct,, 

1 
y1 

y2 
. 
. 
. 
. 

y= : 
. 
. 

_ ‘n _ 

Mj tt,’ IL1(“j) 

iq, = 

~2(“j’ 

. 

. 

. 

. 

. 

. 

. 

. 

Pnwj’ 
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Since there are structural design limits for any launch vehicle, it is essential 
that one calculate the probability of exceeding a given value of bending moment, M?, at 
various values of station jG Using the previous results, we find that the probabiliti of 
not exceeding the value Mj at any time of flight, tl, t2, . . . . . . . . , tn, is given by 

f’ J 

j 
MJ 

. . . . . . . f(Yl’ Y2 , . . . . . , Yn)dyldY2---.dyn 
,m 

If we are interested only in the probability that Mr is not exceeded at a partic- 
ular time, t,, then 

Prob [Mj (t,) s M; 1 

M; 

= 
/ 

’ (269) 

em Urr(Mj’ p 
exp[ - ‘:,‘:2\ dyr 

which is a substantially simpler computation. 
by (265) and (267) respectively. 

Quantities cc,(Mj) and arr(Mj) are given 

Let us write MJ? in the form 

M; = pr(Mj) + a urrWj) 

where a is a positive constant. 

(270) 

Then if we make the change of variable 

‘r = o,,(Mj’ zr -t PrWj’ 

Eq. (269) becomes 

Prob [Mj (t,) s M; 1 = 

(273) 

(272) 

This integral may be evaluated from standard tables (e.g., Ref. 2, p. 132). 
We find 

Prob [Mj(tr) rMf1 = 0.641 if a=1 

= 0.999 if a=3 
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(265) and 
For the case under consideration, &.(Mj) an$Urr(Mj) are available from Eqs. 
(267) respectively; therefore, for a given M. , 

obtained from (270), thus permitting the evaluation o 2 
the appropriate value of a is 

the required probability from 
Eq. (272). 

The scheme herein presented, while having a certain rational and intuitive 
appeal, has several drawbacks in practice. First of all, the available evidence that 
the wind statistics satisfy a Gaussian distribution is far from conclusive. Also, the 
validity of Eq. (265) is based on the assumption that the system under consideration is 
linear and stationary, which of course is not strictly true except for very short time 
intervals. Finally, the computations become extremely cumbersome for systems of 
only moderate order. The method is therefore(;;zful only for obtaining crude esti- 
mates, which must be interpreted with caution. 

In actual practice, the complete nonlinear time-varying system dynamics are 
used to simulate the vehicle on a computer, and a large number of runs are made for 
different wind profiles. Time histories of critical parameters, such as bending mo- 
ment, angle of attack, and engine deflection, then become available. Various criteria, 
such as not exceeding a limiting value of a parameter 95 or 99 percent of the time, are 
used to evaluate the system performance. A detailed discussion of these methods is 
contained in the monograph, “Response Studies, ” which is part 10 of Vol. III in the 
present series. 
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APPENDIX A 

THE DELTA FUNCTION 

The delta function is defined by the properties 

a<O<b 

(Al’ 

642) 

This is more precise than the common engineering definition 

6 (x) = 0 x#o 

6 (x) = a x=0 

The delta function is not a mathematical function in the strict sense. In all 
legitimate applications, this function is visualized as the result of a limiting process 
involving a function, 6 ( x, E), which satisfies the following conditions. 

6 (x, E) 2 0 --,<x<m (A3) 

o<c<m 
co 

J 
6 (x, C)dx=l o<c<m (A4) 

-co 

I. 

II. 

lim 6 (x, c) = o 

c-0 

xfo 

Examples of such functions are 

6 (x, F) =$ -F SX%E 

= 0 otherwise 

6(x, C)=$C 
-x/c 

x20 
= 0 x-c 0 
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1 
III. 6 (x, E) = - e .-(x/q2 

tfi 

2 (x/C) Iv. 6 (x, <) =; sin 2 
X 

The most useful relation involving delta functions is 
m 

I 
g (4 6 (x - x0) dx = g (x0) 

-co 

where 

g (x) is continuous at x = x0. 

W) 

A rigorous treatment of the delta function is contained in Ref. 52. 
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APPENDIX B 

THE WEIGHTING FUNCTION 

.The response of a linear filter to a unit impulse (delta function) applied at 
time t = 0 is called the weighting function. It follows that h(t) = 0 for t < 0 in the case 
of physically realizable filters. 
6 (t - t,), is given by h (t - tl). 

The response to an impulse input at time t I, 

In order to develop an expression for the output, f. (t), in terms of the weight- 
ing function and an arbitrary input, fi (t), one may proceed as follows. 

Let the input signal, fi (t), have the form shown in Fig. Bl. The response to 
a’differential input, fi (tl) 6 (t - tl) A tl, is given by fi (tl) h (t - tl) Atl. By virtue of 

linearity, the response to an arbitrary input, fi (t), may be approximated by 

f. w = c 
fi (t,) h tt - t,W n 

n 
W) 

where the input signal is approximated by the sequence of impulses tlcpictctl in Fig. Bl. 

In the limit, as At, y 0, we obtain 

t 
f. w = 

/ 
h (t - 7 1) fi (T1) d’l 

0 

tW 

An alternate derivation of this expression may be obtained.via Lnplacc trams- 
form theory. If Fi (s) and F. (s) denote the Laplace transforms of fi (t) and f. (t) 
respectively, then 

FOts’ = H(s) Fits’ 

where H (s) is the transfer function relating the output to the input. 

(133) 

Applying the complex multiplication theorem* to Ey. (B3) yields 

f. (t) = e -l[Fo(s)l = ~h~~-~I)fi(~l, drl 

0 
tB4) 

*Ref. 46 p. 228. 
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Via the change of variables, 7 = t - T1, we find 

t- 
f. 0) = I h (7) fi (t - 7) dT 

It is sometimes convenient to write this as 

m 

f. w = 
/ 

h (7) fi (t - 7) dT 

0 

P5) 

W) 

which has the same value as (B5), since 

fi (T1) = 0 for T1 < 0. 

The weighting function may therefore be interpreted as the inverse Laplace 
transform of the transfer function. 

fi lt) 

-At 1 

Figure Bl. Form of Arbitrary Input Signal 
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APPENDIX C 

A SIMPLE APPLICATION OF 
QUASILINEARIZATION 

In order to clarify the basic ideas of the quasilinearization method discussed 
in Sec. 3.3.5.1, we consider the following nonlinear equation. 

. . x1 
xl-e = 0 

with the boundary conditions 

(Cl’ 

x1 (0) =x1 (1) = 0 

According to the discussion of Sec. 3.3.5.1, we may write this as 

. 
x1 

=x Ef 
2 1 

i2 = e xl E f 
2 

with 

x1 (0) = 0 E a01 

x1 (1) = 0 E a 
11 

From Eq. (220). 

F(k)(T) = 0 
11 

Ftk’(T) = 1 
12 

t k’ 
Ftk)(T) = eX1 

21 Ftk’(T) = 0 
22 

(C2’ 

(C3) 

(C4’ 

(C5) 

Therefore, from (221), 
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(k) u1 (7) = 0 

Then 

(k) 
x1 uik)(Z) = ( 1 - xik) ) e 

As an initial approximation, we assume 

$4 
x:)(T) 0 

(7) = (o) = 

[ I[1 
x2 (7) 0 

FE(r) = 1 

FE(T) = 0 

F(‘)(T) = 0 
11 

F(‘)(T) = 1 
21 

From Eq. (224) 

IF) (7) = H(l) (7) 
11 21 

A;; (7) = H’::(T) 

G(l) (7) = H(l) (7) 
21 11 

i$; (7) = Hy2) (7) 

(1) (1) 
Hll (0) = H22 (0) = 1 

H;‘2’ (0) = H’zi’ (0) = 0 

The solution of this system is given by 
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H(l) (7) = El(l) (7) 
11 22 =; (er+ e-3 

(1) (l) H12 (7) = H21 (7) 

tiso, from Eqs. (225), (C5), and (c6), 

q’(T) = py) 

6;’ (7) = py (7) -I- 1 

PI]’ (0) = pf’ (0) = 0 

The solution to this set of equations is given by 

py (7) =; T -T -1 
( J 
e +e 

py ’ (7) = i 
( ) 
eT _ e-’ 

The first component of the vector equation (223) is 

XI]-’ (7) = Hli’ (7) ,c’11) + Hy2) (7) ~‘21) + p’:) (7) 

Substituting known values for 7 = 0 and 7 = 1 yields two equations for the two 

unknowns cy) and cy). These turn out to be cy) = 0 and c:) = - 0.46212. Therefore 

the first quasilinear approximation to Eq. (Cl) is 

xy’ (7) = - 0.46212 Hli’ (7) + pr) (7) 

where H$) (7) and py) (7) are given by Eqs. (C7) and (C8) respectively. 

(C9) 

The calculations of successive iterations is straightforward. The following 
table summarizes the results obtained after two iterations. 
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7 x(o) xw (2) 
1 1 x1 

x1 actual 

0 

0.1 0 -0.04128 -0.04144 -0.04144 

0.2 0 -0.07297 -0.07327 -0.07327 

0.3 0 -0.09539 -0.09580 -0.09580 

0.4 0 -0.10874 -0.10924 -0.10924 

0.5 0 -0.11318 -0.11370 -0.11370 

0.6 0 -0.10874 -0.10924 -0.10924 

0.7 0 -0.09539 -0.09580 -0.09580 

0.8 0 -0.07297 -0.07327 -0.07327 

0.9 0 -0.04128 -0.04144 -0.04144 

1.0 0 0 0 0 

0 0 0 0 

The last column is calculatedfromthe closed-form solution of Eq. (Cl), 
which is known to be 

x(T)=-ln2+2ln asec[O.5CY(T- 
{ 

where o!is the root of 

Q! set (0.2W) -fi = 0 

or o!=1.33606 
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APPENDIX D 

THE PHILLIPS INTEGRAL 

In calculating mean-square error in the manner of that in Sec. 3.4.1, one is 
required to evaluate integrals of the form 

m 

I, = & 
/ 

gn (xl 

h, 6) hn l-x) 
dx 

-Q) 

where 

hn (x) = a0 xn + al x n-l 
+ . . . . . . . . .+a n 

q., (x) = b. x 
2n-2 

+ bl x 
2n-4 + 

. . . . . . . . . . +b n-l 

Pl) 

P2) 

(D3) 

Note that the order of the numerator is at least two less than the order of the 
denominator. Also, it is required that the roots of h (x) be in the upper half plane. 
Any function, f (x), which contains only even powers of x can be factored in the required 
form, since if x0 is a root of f (x), so is (-x0). 

The value of the integral of Eq. (Dl) is tabulated in Ref. 47 for n = 1, 2, 
. . . . . . . . , 7. 

The values of In for n = 1, 2, 3, 4 are given below. 

bO I1 = - 2a a 
0 1 

I2 = 
-b. + 

2 ao al 

111 



-a2 b. + a b - 
0 1 

I3 = 
2 a0 (a0 a3 - al a2) 

a b 

b. (a2 a3 - a1 a4) - a0 a3 bl t- a0 al b2 + (a0 a3 - al a2) ( > 0 3 - 

I4 = 
a4 

2 a0 (a0 ai + a2 a 14 - a1 a2 a31 

The evaluation of the Phillips integral is based on Parseval’s theorem. See 
Ref. 56 for a more complete treatment. 
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APPENDIX E 

KALMAN’S FILTER AND PREDICTION EQUATIONS 

As noted in Sec. 3.3, Kalman’s derivation of the optimal filter equations 
makes use of some sophisticated mathematical concepts. In order to exhibit the basic 
ideas in Kalman’s development of the main results, we shall outline the essential steps 
of his derivation in simplified form. In doing this, we will use the following pro- 
perties of Gaussian random vectors. 

Let x1 and x2 be Gaussian random vectors with 

Mean: CL1 = E (x1) 

~1, = E (x2) 

Covariance: 

- cc,) (x1 - cc,) 
T - a 11 1 = cov (x1) 

CT 
22 - Cc,) (X2 - II,) 

T - 1 = cov (x2) 
u 

12 - Cc,) (X2 - CL21 
T - 1 = cov (x x2) 

1' 

Then 

E (x1 1 x2) = Cc, + o12 U22 
-1 

(x2 - P2) 

If we let 

jil=E(xll x2) 

z =x -2 
1 1 

Then 

(El) 

E (r;; GT, = 0 W) 
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FinaIly, if x x 
1’ 2 

, and x3 are Gaussian random vectors, and the pair x 
2 

, 

x3 are independent, then 

E(x11x2s x3)=E(x11x2)+E(x11x2) (E3) 

Properties (El), (E2), and (E3) are derived in Ref. 59. 

We now consider the discrete form of the optimal filter problem as stated on 
p. 44 and repeated here for convenience. Given the dynamic system 

x (t + 1) = qt + 1, t) x(t) + r (t + 1, t) w 0) VW 

z (t) = M (t) x (t) + v (t) W) 

The random vectors w (t) and V (t) are Gaussian with means and covariance 
given by 

E [w(t)] =E [v(t)] =0 ( w 

E [w(t)wT(T)] -cov [w(t)] =Q(t) t<T:‘t+l 

W’) 

= 0 otherwise 

E [v(t)vT(T)] q cov k(t)] =R(t) t<Tst+l 

W) 
= 0 otherwise 

E [v(t)wT(T)] =0 

We are given the observed values, z (0), z (I), . . . . . , z (t). Kalman shows 
that the optimal estimate of x (t + l), given that z (0), z (1)) . . . . . , z (t) have occurr- 
ed, is merely the conditional mean 

!-t (t + llt) =E x(t + l)lz (0), z(l), . . . . ., z (0 1 

The problem is then reduced to that of calculating (E9). For this purpose, it is 
assumed that x (0) is a Gaussian random vector of zero mean with a known convariance. 
It then follows that x (0), x (l), . . . . . , x (t) is a sequence of Gaussian random vec- 
tors with zero mean. Furthermore, it follows from Eq. (E5) that z (0), z (l), . . . . . , 
z (t) is also a sequence of Gaussian random variables with zero mean. 
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It is convenient to adopt the following notation, in a manner similar to (E9). 

z(t+llt)=E [z(t+l)l3(t)] (E10) 

‘;;(t+llt)=x(t+l)-S(t+lIt) Wl) 

and similarly for z (t + 11 t), etc. 

The fundamental problem,as previously noted, involves the computation of 
the conditional expectation (E9), which,because of the Gaussian statistical properties 
of the system, may be expressed in terms of the given means and variances. To begin 
with, we note that (E9) may be expressed as 

5-i (t + 1 It) = E [ x (t + 1) 1 z (t),? (t-l)] (EW 

But 

z (t) =Y (t 1 t-1 + 2 (t 1 t - 1) (E13) 

by definition, while by (El), ?? (t 1 t - 1) is a linear function of 3 (t -1). It follows 
therefore that Eq. (E12) may be written as 

jt (t + 1 1 t) = E x (t + 1) 1 2 (t 1 t - l),~ (t - I)] (El3 

Furthermore ; (t 1 t - 1) and F (t - 1) are independent random vectors by 
(E2). Consequently, via (E3), we obtain 

;t (t + 1 1 t) = E [x (t + 1) 1 : (t 1 t - I)] + E [x (t + 1) I3’t - I)] 

=E[x(t+l)ly(t\t-I)] +;i(t+l)t-I) (El’3 

From (E5), we have 

% (t 1 t - 1) = M (t) jt (t 1 t - 1) + ? (t 1 t - 1) 

= M (t) 2 (t 1 t - 1) (E 16) 

since v (t) is uncorrelated for successive time instants. Substituting this in 
(E 13) yields 
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‘;: (t 1 t - 1) = z (t) - M (t) 2 (t 1 t - 1) 

= M (t) x (t) + v (t) - M (t) j; (t 1 t - 1) 

= M (t); (t 1 t - 1) + v (t) 

Also from (E4), 

2 (t + 1 I t - 1) = @ (t + 1, t) 2 (t I t - 1) + r (t + 1, t) 6 (t I t - 1) 

= $3 (t + 1, t) 2 (t 1 t - 1) 

which becomes 

2 (t + 1 1 t) = @ (t + 1, t) ?? (t 1 t - 1) + E [x ( t + 1) 1 ; (t 1 t - I)] 

via (E15). Applying (El), this may be written as 

? (t + 1 1 t) = Q (t + 1, t) 2 (t 1 t - 1) + i [ cov x (t + l), 2 (t I t - 1) I) 
X ‘;: (t 1 t - 1) I) %(t 1 t- 1) 

Also, 

cov 

=E zT (t 1 t - 1) M T (t) + iT (t) 

= E M (t)? (t 1 t - l)zT (t 1 t - 1) MT (t) + v (t) VT (t) 

since x (t) and v (t) are independent. 

Defining 

P (t 1 t - 1) = E [?? (t 1 t - 1) zT (t 1 t - 1)] 

we have 

cov [y (t 1 t - I,3 = M (t) P (t 1 t - 1) MT (t) + R (t) 

(EW 

WW 
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Finally 

= E [$ (t + 1, t) ‘j; (t 1 t - l)? (t 1 t - 1) MT (t)] 

= ~3 (t + 1, t) P (t 1 t - 1) MT (t) WW 

Here we have used the fact that 

a) x (t), w (t), and v (t) are all independent of each other. 

W z (t I t - 1) and j; (t I t - 1) are independent of each other by (E2). 

Substituting (E20) and (E21) in (E18), and making use of (E17) yields 

2 (t + 1 1 t) = G (t + 1, t) i? ( t 1 t - 1) + K(t) I z (t) - M (t) 2 (t 1 t - 1) I W=) 

K (t) = @ (t + 1, t) P (t 1 t - 1) MT (t) [M (t) P (t 1 t - 1) MT (t) + R (t) -’ 1 (~23) 

while 

P (t + 1 1 t) = cov 1 ‘;; (t + 1 1 t) 1 1 = cov x (t + 1) - 2 (t + 1 I t) I 

= cov x (t + 1) - @ (t + 1, t) f? (t 1 t - 1) -K (t); (t 1 t - 1) 1 

using (E22) and (El?‘). 

Expanding this : 

P (t + 1 I t) = cov I @ (t + 1, t) x (t) + r(t + 1, t) w(t) - @ (t + 1, t) 2 (t I t - 1) 

-K(t);(t 1 t- 1)] 

= cov I @ (t + 1, t)c;;(t 1 t - 1) + # (t + 1, t) 2 (t I t - 1) 

+ r(t + 1, t) w (t) - G (t + 1, t) 2 (t I t - 1) - K (t)c;: (t It-I)] 
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[@ (t + 1, t) - K (t) M (t)]; (t 1 t - 1) 

+ r (t + 1, t) w (t) - K (t) V (t) 
I 

via (E17). Performing the expectation operation, we have 

P (t + 1 I t) = [ @ (t + 1, t) - K (t) M (t)] P (t 1 t - 1) ]@ (t + 1, t) -K (t) M (t)]. T 

+ r (t + 1, t) Q (t) r T (t + 1, t) + K (t) R (t) KT (t) 

using the fact that x (t), w (t), and v (t) are all independent of each other. 

Rearranging, simplifying, and eliminating K (t) via (E23), we obtain 

P (t + 1 1 t) = @ (t + 1, t) 
i 

P (t 1 t - 1) - P (t 1 t - 1) MT (t) I M(t) 

x P (t 1 t - 1) MT (t) + R (t) I -’ M (t) P (t 1 t - 1) GT (t + 1, t) 

+r(t+l,t)Q(t)rT(t+l,t) (E24) 

The solution to the problem of obtaining the optimal filter is embodied in Equations 
(E22) - (E24), which requires that the initial value of the covariance matrix 
p (to I to - 1) be given. Here obviously, P (to I to -1) E P (to). 
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